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Foreword

Experimentation is fundamental to any scientific and engineering endeavor.

Understanding a discipline involves building models of the various elements of
the discipline, e.g., the objects in the domain, the processes used to manipulate those
objects, the relationship between the processes and the objects. Evolving domain
knowledge implies the evolution of those models by testing them via experiments
of various forms. Analyzing the results of the experiment involves learning, the
encapsulation of knowledge and the ability to change and refine our models over
time. Therefore, our understanding of a discipline evolves over time.

This is the paradigm that has been used in many fields, e.g., physics, medicine,
manufacturing. These fields evolved as disciplines when they began applying
the cycle of model building, experimenting, and learning. Each field began with
recording observations and evolved to manipulating the model variables and
studying the effects of changes in those variables. The fields differ in their nature,
what constitutes the basic objects of the field, the properties of those objects, the
properties of the system that contain them, the relationship of the objects to the
system, and the culture of the discipline. These differences affect how the models
are built and how experimentation gets done.

Like other science and engineering disciplines, software engineering requires
the cycle of model building, experimentation, and learning. The study of software
engineering is a laboratory science. The players in the discipline are the researchers
and the practitioners. The researcher’s role is to understand the nature of the object
(products), the processes that create and manipulate them, and the relationship
between the two in the context of the system. The practitioner’s role is to build
‘improved’ systems, using the knowledge available to date. These roles are symbi-
otic. The researcher needs laboratories to study the problems faced by practitioners
and develop and evolve solutions based upon experimentation. The practitioner
needs to understand how to build better systems and the researcher can provide
models to help.

In developing models and experimenting, both the researcher and the practitioner
need to understand the nature of the discipline of software engineering. All software
isnot the'same: there are a large number of variables that cause differences and their
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effects need to be understood. Like medicine where the variation in human genetics
and medical history is often a major factor in the development of the models and the
interpretation of the experiment’s results, software engineering deals with differing
contexts that affect the input and the results. In software engineering the technolo-
gies are mostly human intensive rather than automated. Like manufacturing the
major problem is understanding and improving the relationship between processes
and the products they create. But unlike manufacturing, the process in software
engineering is development not production. So we cannot collect data from exact
repetitions of the same process. We have to build our models at a higher level of
abstraction but still take care to identify the context variables.

Currently, there is an insufficient set of models that allow us to reason about the
discipline, a lack of recognition of the limits of technologies for certain contexts,
and insufficient analysis and experimentation going on but this latter situation is
improving as evidenced by this textbook.

This book is a landmark in allowing us to train both the researcher and
practitioner in software engineering experimentation. It is a major contribution to
the field. The authors have accumulated an incredible collection of knowledge and
packaged it in an excellent way, providing a process for scoping, planning, running,
analyzing and interpreting, and packaging experiments. They cover all necessary
topics from threats to validity to statistical procedures.

Itis well written and covers a wide range of information necessary for performing
experiments in software engineering. When I began doing experiments, I had to
find various sources of information, almost always from other disciplines, and adapt
them to my needs as best I could. If I had this book to help me, it would have saved
me an enormous amount of time and effort and my experiments would probably
have been better.

Professor Victor R. Basili

oLl Zyl_i.lbl




Foreword

I am honored to be asked to write a foreword for this revision of the authors’
book with the same title that was published in 2000. I have used the original
edition since its publication as a teacher and a researcher. Students in my courses
at Colorado State University, Washington State University, University of Denver,
and Universitaet Wuerzburg have used the book over the years. Some were full-
time employees at major companies working on graduate degrees in Systems
Engineering, others full-time Masters and Ph.D. students. The book worked well
for them. Besides the treatment of experimental software engineering methods, they
liked its conciseness. I am delighted to see that the revised version is as compact
and easy to work with as the first.

The additions and modifications in this revised version very nicely reflect the
maturation of the field of empirical software engineering since the book was
originally published: the increased importance of replication and synthesis of
experiments, and the need of academics and professionals to successfully transfer
new technology based on convincing quantitative evidence. Another important
improvement concerns the expanded treatment of ethical issues in software engi-
neering experimentation. Especially since no formal code of ethics exists in this
field, it is vitally important that students are made aware of such issues and have
access to guidelines how to deal with them.

The original edition of this book emphasized experiments. In industry, however,
case studies tend to be more common to evaluate technology, software engineering
processes, or artifacts. Hence the addition of a chapter on case studies is much
needed and welcomed. So is the chapter on systematic literature reviews.

Having taught a popular quantitative software engineering course with the
original edition for a dozen years, this revised version with its additions and updates
provides many of the materials I have added separately over the years. Even better,
it does so without losing the original edition’s compactness and conciseness. I, for
one, am thrilled with this revised version and will continue to use it as a text in my
courses and a resource for my student researchers.

Professor Anneliese Amschler Andrews
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Foreword from Original Edition

It is my belief that software engineers not only need to know software engineering
methods and processes, but that they also should know how to assess them.
Consequently, I have taught principles of experimentation and empirical studies
as part of the software engineering curriculum. Until now, this meant selecting a
text from another discipline, usually psychology, and augmenting it with journal
or conference papers that provide students with software engineering examples of
experiments and empirical studies.

This book fills an important gap in the software engineering literature: it provides
a concise, comprehensive look at an important aspect of software engineering:
experimental analysis of how well software engineering methods, methodologies,
and processes work. Since all of these change so rapidly in our field, it is important
to know how to evaluate new ones. This book teaches how to go about doing this
and thus is valuable not only for the software engineering student, but also for the
practicing software engineering professional who will be able to

¢ Evaluate software engineering techniques.
e Determine the value (or lack thereof) of claims made about a software engineer-
ing method or process in published studies.

Finally, this book serves as a valuable resource for the software engineering
researcher.

Professor Anneliese Amschler Andrews (formerly von Mayrhauser)
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Preface

Have you ever had a need to evaluate software engineering methods or techniques
against each other? This book presents experimentation as one way of evaluating
new methods and techniques in software engineering. Experiments are valuable
tools for all software engineers who are involved in evaluating and choosing
between different methods, techniques, languages and tools.

It may be that you are a software practitioner, who wants to evaluate methods
and techniques before introducing them into your organization. You may also be a
researcher, who wants to evaluate new research results against something existing,
in order to get a scientific foundation for your new ideas. You may be a teacher, who
believes that knowledge of empirical studies in software engineering is essential to
your students. Finally, you may be a student in software engineering who wants
to learn some methods to turn software engineering into a scientific discipline and
to obtain quantitative data when comparing different methods and techniques. This
book provides guidelines and examples of how you should proceed to succeed in
your mission.

Software Engineering and Science

The term “software engineering” was coined in 1968, and the area is still maturing.
Software engineering has over the years been driven by technology development
and advocacy research. The latter referring to that we have invented and introduced
new methods and techniques over the years based on marketing and conviction
rather than scientific results. To some extent, it is understandable with the pace the
information society has established itself during the last couple of decades. It is,
however, not acceptable in the long run if we want to have control of the software
we develop. Control comes from being able to evaluate new methods, techniques,
languages and tools before using them. Moreover, this would help us turn software
engineering into a smentlﬁc dlsmphne Before looking at the issues we must address
et us look at the way science is viewed in

xi
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In “Fermat’s Last Theorem” by Dr. Simon Singh, [160], science is discussed.
The essence of the discussion can be summarized as follows. In science, physical
phenomena are addressed by putting forward hypotheses. The phenomenon is
observed and if the observations are in line with the hypothesis, this becomes
evidence for the hypothesis. The intention is also that the hypothesis should enable
prediction of other phenomena. Experiments are important to test the hypothesis
and in particular the predictive ability of the hypothesis. If the new experiments
support the hypothesis, then we have more evidence in favor of the hypothesis.
As the evidence grows and becomes strong, the hypothesis can be accepted as a
scientific theory.

The summary is basically aiming at hypothesis testing through empirical research.
This may not be the way most research is conducted in software engineering today.
However, the need to evaluate and validate new research proposals by conducting
empirical studies is acknowledged to a higher degree today than 10 years ago.
Empirical studies include surveys, experiments and case studies. Thus, the objective
of this book is to introduce and promote the use of empirical studies in software
engineering with a particular emphasis on experimentation.

Purpose

The purpose of the book is to introduce students, teachers, researchers, and
practitioners to experimentation and empirical evaluation with a focus on software
engineering. The objective is in particular to provide guidelines of how to perform
experiments to evaluate methods, techniques and tools in software engineering,
although short introductions are provided also for other empirical approaches.
The introduction into experimentation is provided through a process perspective.
The focus is on the steps that we have to go through to perform an experiment. The
process can be generalized to other types of empirical studies, but the main focus
here is on experiments and quasi-experiments.

The motivation for the book comes from the need of support we experienced
when turning our software engineering research more experimental. Several books
are available which either treat the subject in very general terms or focus on some
specific part of experimentation; most of them focusing on the statistical methods
in experimentation. These are important, but there is a lack of books elaborating
on experimentation from a process perspective. Moreover, there are few books
addressing experimentation in software engineering in particular, and actually no
book at all when the original edition of this book was published.

Scope

The scope of the book is primarily experiments in software engineering as a
means'forevaluating'methodsytechniquesietc. The book provides some information
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regarding empirical studies in general, including case studies, systematic literature
reviews and surveys. The intention is to provide a brief understanding of these
strategies and in particular to relate them to experimentation.

The chapters of the book cover different steps to go through to perform
experiments in software engineering. Moreover, examples of empirical studies
related to software engineering are provided throughout the book. It is of particular
importance to illustrate for software engineers that empirical studies and experi-
mentation can be practiced successfully in software engineering. Two examples
of experiments are included in the book. These are introduced to illustrate the
experiment process and to exemplify how software engineering experiments can
be reported. The intention is that these studies should work as good examples and
sources of inspiration for further empirical work in software engineering. The book
is mainly focused on experiments, but it should be remembered that other strategies
are also available, for example, case studies and surveys. In other words, we do not
have to resort to advocacy research and marketing without quantitative data when
research strategies as, for example, experiments are available.

Target Audience

The target audience of the book can be divided into four categories.

Students may use the book as an introduction to experimentation in software
engineering with a particular focus on evaluation. The book is suitable as a course
book in undergraduate or graduate studies where the need for empirical studies in
software engineering is stressed. Exercises and project assignments are included in
the book to combine the more theoretical material with some practical aspects.

Teachers may use the book in their classes if they believe in the need of making
software engineering more empirical. The book is suitable as an introduction to the
area. It should be fairly self-contained, although an introductory course in statistics
is recommended.

Researchers may use the book to learn more about how to conduct empirical studies
and use them as one important ingredient in their research. Moreover, the objective
is that it should be fruitful to come back to the book and use it as a checklist when
performing empirical research.

Practitioners may use the book as a “cookbook” when evaluating some new
methods or techniques before introducing them into their organization. Practitioners
are expected to learn how to use empirical studies in their daily work when
changing, for example, the development process in the organization they are
working.



Xiv Preface

Outline

The book is divided into three main parts. The outline of the book is summarized
in Table 1, which also shows a mapping to the original edition of this book.
The first part provides a general introduction to the area of empirical studies in
Chap. 1. It puts empirical studies in general and experiments in particular into a
software engineering context. In Chap. 2, empirical strategies (surveys, case studies
and experiments) are discussed in general and the context of empirical studies
is elaborated, in particular from a software engineering perspective. Chapter 3
provides a brief introduction to measurement theory and practice. In Chap.4 we
provide an overview of how to conduct systematic literature reviews, to synthesize
findings from several empirical studies. Chapter 5 gives an overview of the case
studies as a related type of empirical studies. In Chap.6, the focus is set on
experimentation by introducing general experiment process.

Part II has one chapter for each experiment step. Chapter 7 discusses how set the
scope for an experiment, and Chap. 8 focuses on the planning phase. Operation of
the experiment is discussed in Chaps. 9 and 10 presents some methods for analyzing
and interpreting the results. Chapter 11 discusses presentation and packaging of the
experiment.

Part III contains two example experiments. In Chap. 12, an example is presented
where the main objective is to illustrate the experiment process, and the example
in Chap. 13 is used to illustrate how an experiment in software engineering may be
reported in a paper.

Some exercises and data are presented in Appendix A. Finally, the book displays
some statistical tables in Appendix B. The tables are primarily included to provide
support for some of the examples in the book. More comprehensive tables are
available in most statistics books.

Exercises

The exercises are divided into four categories, the first presented at the end of
each chapter in Parts I and II of the book (Chaps. 1-11), and the other three in
Appendix A:

Understanding. Five questions capturing the most important points are provided
at the end of each chapter. The objective is to ensure that the reader has understood
the most important concepts.

Training. These exercises provide an opportunity to practice experimentation. The
exercises are particularly targeted towards analyzing data and answering questions
in relation to an experiment.

Reviewing. This exercise is aimed at the examples of experiments presented in
Chapsn12=13nTherobjectiverisitorgiveran opportunity to review some presented
experiments. After having read several experiments presented in the literature, it is
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Table 1 Structure of the book

Subject Revised  Original ~ Major updates
version  edition

Part I. Background

Introduction 1 1

Empirical Strategies 2 2 New sections on replication,
synthesis, technology
transfer and ethics

Measurement 3 3 New section on measurement
in practice

Systematic Literature Reviews 4 104 New chapter

Case Studies 5 New chapter

Experiment Process 6 4

Part II. Steps in the Experiment Process New running example

Scoping 7 5b Adapted terminology

Planning 8 6

Operation 9 7

Analysis and Interpretation 10 8

Presentation and Package 11 9 Major revision

Part III. Example Experiments

Experiment Process Illustration 12 11

Are the Perspectives Really Different? 13 New chapter

Appendices

Exercises A 13 Understanding exercises moved
to each chapter

Statistical Tables B A

¢ Entitled Survey, and with a different scope
b Entitled Definition

clear that most experiments suffer from some problems. This is mostly due to the
inherit problems of performing experimentation in software engineering. Instead of
promoting criticism of work by others, we have provided some examples of studies
that we have conducted ourselves. They are, in our opinion, representative of the
type of experiments that are published in the literature. This includes that they have
their strengths and weaknesses.

Assignments. The objective of these exercises is to illustrate how experiments can
be used in evaluation. These assignments are examples of studies that can be carried
out within a course, either at a university or in industry. They are deliberately aimed
at problems that can be addressed by fairly simple experiments. The assignments
can either be done after reading the book or one of the assignments can be carried
out as the book is read. The latter provides an opportunity to practice while reading
the chapters. As an alternative, we would like to recommend teachers to formulate
an assignment, within their area of expertise, that can be used throughout the book
to exemplify the concepts presented in each chapter.
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Chapter 1
Introduction

The information technology revolution has meant, among other things, that software
has become a part of more and more products. Software is found in products ranging
from toasters to space shuttles. This means that a vast amount of software has been
and is being developed. Software development is by no means easy; it is a highly
creative process. The rapid growth of the area has also meant that numerous software
projects have run into problems in terms of missing functionality, cost overruns,
missed deadlines and poor quality. These problems or challenges were identified
already in the 1960s, and in 1968 the term “software engineering” was coined with
the intention of creating an engineering discipline that focused on the development
of software-intensive systems.

Software engineering is formally defined by IEEE [84] as “software engineering
means application of a systematic, disciplined, quantifiable approach to develop-
ment, operation and maintenance of software’’. Software engineering in general
is presented and discussed in books as, for example, by Sommerville [163], and
Pfleeger and Atlee [134]. The objective here is to present how empirical studies and
experiments in particular fit into a software engineering context. Three aspects in
the definition above are of particular importance here. First, it implies a software
process through pointing at different life cycle phases; secondly, it stresses the need
for a systematic and disciplined approach; finally, it highlights the importance of
quantification. The use of empirical studies is related to all three of them. The
software engineering context is further discussed in Sect. 1.1. The need to turn
software engineering more scientific and how empirical studies play an important
role in this is discussed in Sect. 1.2.

1.1 Software Engineering Context

A software process model is used to describe the steps to take and the activities
to perform when developing software. Examples of software process models are
the'waterfall modelyincremental'development, evolutionary development, the spiral

C. Wohlin et al., Experimentation.in Software Engineering, 3
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Fig. 1.1 An illustration of Resources

the software process l
Product idea Software product
process

model and different agile approaches to software development. These and other
models are discussed in the general software engineering literature. A simplistic
view of the software process is shown in Fig. 1.1. It should be noted that the process
is crucial whether we work with development of a new product or maintenance of
an existing product.

In Fig. 1.1, an idea and resources, primarily in the form of people, are inputs to
the software process, and the people develop a software product going through the
different steps and performing the different activities in the software process.

The development of software products is many times a complex task. Software
projects may run over a long period of time and involve many people (even if using
agile methods), due to the complexity of the software products that are developed.
This implies that the software process often also becomes very complex. It consists
of many different activities and many documents are written before the final product
can be delivered. The complexity of the software process means that it is difficult to
optimize it or even find a good enough process. Thus, it is important for companies
to strive to improve their way of making business if they intend to stay competitive.
This means that most companies are continuously trying to improve their software
process in order to improve the products, lower the cost and so forth. The software
process stresses the need for a systematic and disciplined approach to working.
Being agile is not an exception, there is still a need to have structured approach
although agile methods stress the need to not document too much and emphasize
the need to have running code continuously instead of “only” at the end of a large
project. A systematic and disciplined approach is also needed when improving the
software process, and hence a way to improve process is needed.

An example of an improvement process tailored for software development is the
Quality Improvement Paradigm (QIP), defined by Basili [7]. It consists of several
steps to support a systematic and disciplined approach to improvement. The QIP is
presented briefly in Sect.2.9.2. A more general improvement process is the well-
known Plan/Do/Study/Act cycle [23, 42]. The improvement processes include two
activities, although the same terminology is not always used, that we would like to
highlight:

* Assessment of the software process.

* Evaluation of a software process improvement proposal.

The assessment is conducted to identify suitable areas for improvement. Several
models exist for assessing the software process. The most well known is proba-
blysthe-Capability-Maturity=Model:(EMM) from Software Engineering Institute
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at Carnegie-Mellon University, USA [33, 130]. The assessment models help in
pinpointing where improvements are needed. CMM has five maturity levels with
so called key process areas on each level. It is recommended that companies focus
on improvement areas according to their maturity level.

Assuming that it is possible to identify areas for improvement through some form
of assessment, the next step is to determine how these areas of improvement may be
addressed to cope with the identified problems. For example, if too many defects are
found in system testing, it may be possible to improve earlier testing, inspections or
even specific parts in the development, for example, software design. The objective
is that the assessment of the current situation and knowledge about the state-of-the-
art should result in that concrete process improvement proposals can be identified.
When the improvement proposals have been identified, it is necessary to determine
which to introduce, if any. It is often not possible just to change the existing software
process without having more information about the actual effect of the improvement
proposal. In other words, it is necessary to evaluate the proposals before making any
major changes.

One problem that arises is that a process improvement proposal is very hard to
evaluate without direct human involvement. For a product, it is possible to first build
a prototype to evaluate whether it is something to work further with. For a process,
it is not possible to build a prototype. It is possible to make simulations and compare
different processes, but it should be remembered that this is still an evaluation that
is based on a model. The only real evaluation of a process or process improvement
proposal is to have people using it, since the process is just a description until it
is used by people. Empirical studies are crucial to the evaluation of processes and
human-based activities. It is also beneficial to use empirical studies when there is a
need to evaluate the use of software products or tools. Experimentation provides a
systematic, disciplined, quantifiable and controlled way of evaluating human-based
activities. This is one of the main reasons why empirical research is common in
social and behavioral sciences, see for example Robson [144].

In addition, empirical studies and experiments in particular are also important
for researchers in software engineering. New methods, techniques, languages and
tools should not just be suggested, published and marketed. It is crucial to evaluate
new inventions and proposals in comparison with existing ones. Experimentation
provides this opportunity, and should be used accordingly. In other words, we should
use the methods and strategies available when conducting research in software
engineering. This is further discussed next.

1.2 Science and Software Engineering

Software engineering is a cross-disciplinary subject. It stretches from technical is-
sues such as databases and operating systems, through language issues, for example,
syntax and semantics, to social issues and psychology. Software development is
human=intensive;werareyatleasttoday;unable to manufacture new software. It is a
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discipline based on creativity and the ingenuity of the people working in the field.
Nevertheless, we should, when studying and doing research in software engineering,
aim at treating it as a scientific discipline. This implies using scientific methods for
doing research and when making decisions regarding changes in the way we develop
software.

In order to perform scientific research in software engineering, we have to
understand the methods that are available to us, their limitations and when they
can be applied. Software engineering stems from the technical community. Thus, it
is natural to look at the methods used for research in, for example, hardware design
and coding theory, but based on the nature of software engineering we should look
at other disciplines too. Glass summarized four research methods in the field of
software engineering [62]. They were initially presented in a software engineering
context by Basili [9]. The methods are:

Scientific The world is observed and a model is built based on the observation,
for example, a simulation model.

Engineering The current solutions are studied and changes are proposed, and then
evaluated.

Empirical A model is proposed and evaluated through empirical studies, for
example, case studies or experiments.

Analytical A formal theory is proposed and then compared with empirical
observations.

The engineering method and the empirical method can be seen as variations of the
scientific method [9].

Traditionally, the analytical method is used in the more formal areas of electrical
engineering and computer science, e.g. electromagnetic theory and algorithms. The
scientific method is used in applied areas, such as simulating a telecommunication
network in order to evaluate its performance. It should, however, be noted that
simulation as such is not only applied in the scientific method. Simulation may be
used as a means for conducting an experiment as well. The engineering method is
probably dominating in industry.

The empirical studies have traditionally been used in social sciences and
psychology, where we are unable to state any laws of nature, as in physics.! In
social sciences and psychology, they are concerned with human behavior. The
important observation, in this context, is hence that software engineering is very
much governed by human behavior through the people developing software. Thus,
we cannot expect to find any formal rules or laws in software engineering except
perhaps when focusing on specific technical aspects. The focus of this book is on
applying and using empirical studies in software engineering. The objective is in
particular to emphasize the underlying process when performing empirical studies
in general and experimentation in particular. An experiment process is presented,

'Lehman [110] referred to laws of software evolution, but this notion has not been widespread in
subsequent work on theory, see further Sect. 2.7.
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which highlights the basic steps to perform experiments, provides guidelines of what
to do and exemplifies the steps using software engineering examples.

It must be noted that it is not claimed that the analytical, scientific and
engineering methods are inappropriate for software engineering. They are necessary
for software engineering as well, for example, we may build mathematical models
for software reliability growth [116]. Moreover, the research methods are not
orthogonal, and hence it may, for example, be appropriate to conduct an empirical
study within, for example, the engineering method. The important point is that we
should make better use of the methods available within empirical research. They are
frequently used in other disciplines, for example, behavioral sciences, and the nature
of software engineering has much in common with disciplines outside the technical
parts of engineering.

The very first experiments in software engineering were conducted in the
late 1960s by Grant and Sackmann [69] about on- and off-line work in testing,
according to Zendler [182]. In the 1970s, a few pioneers conducted experiments
on structured programming [115], flowcharting [151] and software testing [126].
The need for systematic experimentation in software engineering was emphasized
in the middle of the 1980s by Basili et al. [15]. Other articles stressing the
need for empiricism in software engineering have since been published, see for
example work by Basili, Fenton, Glass, Kitchenham, Pfleeger, Pickard, Potts and
Tichy [9,57,62,97,140,169]. The lack of empirical evidence in software engineering
research is stressed by Tichy et al. [170], Zelowitz and Wallace [181] and Glass
et al. [63]. The latter publications indicate that the research in software engineering
is still too much of advocacy research [140]. A more scientific approach to software
engineering is needed. The focus of this book is on software engineering and the
application and use of empirical studies, in particular experimentation, in software
engineering. The number of published experiments in software engineering has
increased, and a substantial number of experiments has been published, as reviewed
by Sjgberg et al. [161].

Empirical strategies in software engineering include:

e Setting up formal experiments,
* Studying real projects in industry, i.e. performing a case study, and
e Performing surveys through, for example, interviews.

These strategies are described in some more detail in Chaps.2 and 5 before
focusing the rest of this book on experimentation. A more general introduction to
these research strategies is presented by, for example, Robson [144]. Case studies
in general are elaborated by Yin [180] and case studies specifically in software en-
gineering are elaborated by Runeson et al. [146]. The research strategies are neither
completely orthogonal nor competing. They provide a convenient classification, but
some studies may be viewed as combinations of them or somewhere between two
of them. Thus, there are both similarities and differences between the strategies.

The main reason to use experimentation in software engineering is to en-
able understanding and identification of relationships between different factors,
ofvariables:Arnumber of "preconceived ideas exist, but are they true? Does
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object-orientation improve reuse? Are inspections cost-effective? Should we have
inspection meetings or is it sufficient to hand-in the remarks to a moderator?
This type of questions can be investigated in order to improve our understanding
of software engineering. Improved understanding is the basis for changing and
improving the way we work, hence empirical studies in general and experimentation
in particular are important.

The introduction to the area is based on the introduction of a process for
experimentation. The basic steps in the process can be used for other types of
empirical studies too. The focus is, however, on providing guidelines and support for
performing experiments in software engineering. Furthermore, it should be noted
that ‘true’ experiments, i.e. experiments with full randomization, are difficult to
perform in software engineering. Software engineering experiments are often quasi-
experiments, i.e. experiment in which it, for example, has not been possible to assign
participants in the experiments to groups by random [37]. Quasi-experiments are
important, and they can provide valuable results. The process presented in this book
is aimed at both ‘true’ experiments and quasi-experiments. The latter is particularly
supported by a thorough discussion of threats to experiments.

Thus, the intention of this book is to provide an introduction to empirical studies
and experimentation, in order to highlight the opportunities and benefits of doing
experiments in the field of software engineering. The empirical research method can,
and should be used more in software engineering. The arguments against empirical
studies in software engineering are refuted by Tichy et al. [169]. Hopefully, this
practical guide to experimentation in software engineering facilitates the use of
empirical studies and experimentation both within software engineering research
and practice.

1.3 Exercises

1.1. Why can experiments be viewed as prototyping for process changes?
1.2. How can experiments be used in improvement activities?
1.3. Why are empirical studies important in software engineering?

1.4. When is the empirical research method best suited in software engineering in
comparison with the scientific, engineering and analytic methods respectively?

1.5. Which three strategies are empirical methods divided into?




Chapter 2
Empirical Strategies

There are two types of research paradigms that have different approaches to
empirical studies. Exploratory research is concerned with studying objects in their
natural setting and letting the findings emerge from the observations. This implies
that a flexible research design [1] is needed to adapt to changes in the observed
phenomenon. Flexible design research is also referred to as qualitative research, as
it primarily is informed by qualitative data. Inductive research attempts to interpret
a phenomenon based on explanations that people bring forward. It is concerned with
discovering causes noticed by the subjects in the study, and understanding their view
of the problem at hand. The subject is the person, which is taking part in an empirical
study in order to evaluate an object.

Explanatory research is mainly concerned with quantifying a relationship or to
compare two or more groups with the aim to identify a cause-effect relationship.
The research is often conducted through setting up controlled experiment. This
type of study is a fixed design [1] study, implying that factors are fixed before the
study is launched. Fixed design research is also referred to as quantitative research,
as it primarily is informed by quantitative data. Quantitative investigations are
appropriate when testing the effect of some manipulation or activity. An advantage
is that quantitative data promotes comparisons and statistical analyses. It is possible
for qualitative and quantitative research to investigate the same topics but each
of them will address a different type of question. For example, a quantitative
investigation could be launched to investigate how much a new inspection method
decreases the number of faults found in test. To answer questions about the sources
of variations between different inspection groups, a qualitative investigation could
be launched.

As mentioned earlier, fixed design strategies, such as controlled experiments, are
appropriate when testing the effects of a treatment while a flexible design study of
beliefs, understandings, and multiple perspectives are appropriate to find out why
the results from a quantitative investigation are as they are. The two approaches
should be regarded as complementary rather than competitive.

C. Wohlin et al., Experimentation.in Software Engineering, 9
DOI 10.1007/978-3-642-29044-2_ 2, © Springer-Verlag Berlin Heidelberg 2012
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The objectives of this chapter are: (1) to introduce empirical research strategies,
(2) to highlight some important aspects in relation to the empirical strategies,
and (3) to illustrate how the strategies can be used in the context of technology
transfer and improvement. To fulfil the first objective, an overview of empirical
strategies is provided, see Sect. 2.1, and then surveys, case studies and experiments
are discussed in some more detail. The different empirical strategies are presented
briefly in Sects.2.2-2.4, and a comparison of them is provided in Sect.2.5. The
second objective is addressed by addressing replications of experiments in Sect. 2.6,
theories in relation to empirical studies are briefly discussed in Sect.2.7, and
aggregation of empirical studies are elaborated in Sect. 2.8. Finally, the use of the
research strategies within a technology transfer process and as being part of an
improvement program is discussed in Sect. 2.9.

2.1 Overview of Empirical Strategies

Depending on the purpose of the evaluation, whether it is techniques, methods or
tools, and depending on the conditions for the empirical investigation, there are three
major different types of investigations (strategies) that may be carried out, survey,
case study and experiment [144].

Definition 2.1. A survey is a system for collecting information from or about
people to describe, compare or explain their knowledge, attitudes and behavior [58].

A survey is often an investigation performed in retrospect, when, for example, a
tool or technique, has been in use for a while [133]. The primary means of gathering
qualitative or quantitative data are interviews or questionnaires. These are done
through taking a sample which is representative from the population to be studied.
The results from the survey are then analyzed to derive descriptive and explanatory
conclusions. They are then generalized to the population from which the sample was
taken. Surveys are discussed further by Fink [58] and Robson [144].

Definition 2.2. Case study in software engineering is: an empirical enquiry that
draws on multiple sources of evidence to investigate one instance (or a small number
of instances) of a contemporary software engineering phenomenon within its real-
life context, especially when the boundary between phenomenon and context cannot
be clearly specified [146].

Case studies are used to research projects, activities or assignments. Data is
collected for a specific purpose throughout the study. Based on the data collection,
statistical analyses can be carried out. The case study is normally aimed at tracking
a specific attribute or establishing relationships between different attributes. The
level of control is lower in a case study than in an experiment. A case study is
an observational study while the experiment is a controlled study [181]. A case
study may, for example, be aimed at building a model to predict the number of
faultsrin testing [2]»Multivariaterstatistical analysis is often applied in this type of
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studies. The analysis methods include linear regression and principal component
analysis [118]. Case study research is further discussed in general by, for example,
Robson [144], Stake [165], and Yin [180], and specifically for software engineering
by Pfleeger [133], Kitchenham et al. [97], Verner et al. [173], Runeson and Host
[145], and Runeson et al. [146].

For the empirical investigation strategy in main focus of this book, experiment,
we define:

Definition 2.3. Experiment (or controlled experiment) in software engineering is
an empirical enquiry that manipulates one factor or variable of the studied setting.
Based in randomization, different treatments are applied to or by different subjects,
while keeping other variables constant, and measuring the effects on outcome
variables. In human-oriented experiments, humans apply different treatments to
objects, while in technology-oriented experiments, different technical treatments are
applied to different objects.

Experiments are mostly done in a laboratory environment, which provides a high
level of control. When experimenting, subjects are assigned to different treatments
at random. The objective is to manipulate one or more variables and control all
other variables at fixed levels. The effect of the manipulation is measured, and based
on this a statistical analysis can be performed. In cases where it is impossible to
randomly assign treatments to subjects, we may use quasi-experiments.

Definition 2.4. Quasi-experiment is an empirical enquiry similar to an experi-
ment, where the assignment of treatments to subjects cannot be based on random-
ization, but emerges from the characteristics of the subjects or objects themselves.

In experimental studies, methods for statistical inference are applied with the
purpose of showing with statistical significance that one method is better than the
other [125, 144, 157]. The statistical methods are further discussed in Chap. 10.

Surveys are very common within social sciences where, for example, attitudes
are polled to determine how a population will vote in the next election. A survey
provides no control of the execution or the measurement, though it is possible to
compare it with similar ones, but it is not possible to manipulate variables as in the
other investigation methods [6].

Case study research is a technique where key factors that may have any effect
on the outcome are identified and then the activity is documented [165, 180]. Case
study research is an observational method, i.e. it is done by observation of an on-
going project or activity.

An experiment is a formal, rigorous and controlled investigation. In an exper-
iment the key factors are identified and manipulated, while other factors in the
context are kept unchanged, see Sect.6.1. The separation between case studies
and experiment can be represented by the level of control of the context [132].
In an experiment, different situations are deliberately enforced and the objective
is normally to distinguish between two situations, for example, a control situation
and the situation under investigation. Examples of the manipulated factors could be,
forrexample; therinspection'method ot experience of the software developers. In a
case study, the context is governed by the actual project under study.
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Table 2.1 Design type and

qualitative vs. quantitative Strategy Pe31gn type Qualitative/quantitative
data in empirical strategies Survey Fixed Both

Case study Flexible Both

Experiment Fixed Quantitative

Some of the research strategies could be informed by qualitative or quantitative
data, depending on the design of the investigation, see Table 2.1. The classification
of a survey depends on the design of the questionnaires, i.e. which data is collected
and if it is possible to apply any statistical methods. This is also true for case studies
but the difference is that a survey is done in retrospect while a case study is done
while a project is executed. A survey could also be launched before the execution of
a project. In the latter case, the survey is based on previous experiences and hence
conducted in retrospect to these experiences although the objective is to get some
ideas of the outcome of the forthcoming project.

Experiments is almost purely quantitative since they have a focus on measuring
different variables, change them and measure them again. During these inves-
tigations quantitative data is collected and then statistical methods are applied.
However, qualitative data may be collected to help interpretation of the data [93].
The following sections give an introduction to each empirical strategy.

2.2 Surveys

Surveys are conducted when the use of a technique or tool already has taken place
[133] or before it is introduced. It could be seen as a snapshot of the situation to
capture the current status. Surveys could, for example, be used for opinion polls and
market research.

When performing survey research the interest may be, for example, in studying
how a new development process has improved the developers attitudes towards
quality assurance or prioritizing quality attributes [94]. Then a sample of developers
is selected from all the developers at the company. A questionnaire is constructed to
obtain information needed for the research. The questionnaires are answered by the
sample of developers. The information collected are then arranged into a form that
can be handled in a quantitative or qualitative manner.

2.2.1 Survey Characteristics

Sample surveys are almost never conducted to create an understanding of the
particular sample. Instead, the purpose is to understand the population, from which
the sample was drawn [6]. For example, by interviewing 25 developers on what they
think about a new process, the opinion of the larger population of 100 developers
in the company,can, be assessed-,Surveys aim at the development of generalized
conclusions.
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Surveys have the ability to provide a large number of variables to evaluate, but it
is necessary to aim at obtaining the largest amount of understanding from the fewest
number of variables since this reduction also eases the data collection and analysis
work. Surveys with many questions are tedious for respondents to fill out, and the
data quality may consequently decline. On the other hand, surveys aim at providing
broad overviews, which may require questions in several fields.

2.2.2 Survey Purposes

The general objectives for conducting a survey is either of the following [6]:

e Descriptive
e Explanatory
e Explorative

Descriptive surveys can be conducted to enable assertions about some population.
This could be determining the distribution of certain characteristics or attributes.
The concern is not about why the observed distribution exists, but instead what that
distribution is.

Explanatory surveys aim at making explanatory claims about the population.
For example, when studying how developers use a certain inspection technique, we
might want to explain why some developers prefer one technique while others prefer
another. By examining the relationships between different candidate techniques and
several explanatory variables, we may try to explain why developers choose one of
the techniques.

Finally, explorative surveys are used as a pre-study to a more thorough investi-
gation to assure that important issues are not foreseen. Creating a loosely structured
questionnaire and letting a sample from the population answer it could do this.
The information is gathered and analyzed, and the results are used to improve the
full investigation. In other words, the explorative survey does not answer the basic
research question, but it may provide new possibilities that could be analyzed and
should therefore be followed up in the more focused or thorough survey.

2.2.3 Data Collection

The two most common means for data collection are questionnaires and inter-
views [58]. Questionnaires could both be provided in paper form or in some
electronic form, for example, e-mail or web pages. The basic method for data
collection through questionnaires is to send out the questionnaire together with
instructions on how to fill it out. The responding person answers the questionnaire
and then returns it to the researcher.
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Letting interviewers handle the questionnaires (by telephone or face-to-face)
instead of the respondents themselves, offers a number of advantages:

* Interview surveys typically achieve higher response rates than, for example, mail
surveys.

e An interviewer generally decreases the number of “do not know” and “no
answer”, because the interviewer can answer questions about the questionnaire.

e It is possible for the interviewer to observe and ask questions. The disadvantage
is the cost and time, which depend on the size of the sample, and they are also
related to the intentions of the investigation.

2.3 Case Studies

A case study is conducted to investigate a single entity or phenomenon in its real-
life context, with in a specific time space. Typically, the phenomenon may be
hard to clearly distinguish from its environment. The researcher collects detailed
information on, for example, one single project during a sustained period of time.
During the performance of a case study, a variety of different data collection
procedures, and analysis perspectives should be applied [146]. A brief introduction
is provided in this chapter to set the context for the different types of empirical
strategies, and a more in-depth introduction is provided in Chap. 5.

If we, for example, would like to compare two methods, the study may be defined
as a case study or an experiment, depending on the scale of the evaluation, the ability
to isolate factors, and feasibility for randomization. An example case study approach
may be to use a pilot project to evaluate the effects of a change compared to some
baseline [97].

Case studies are very suitable for industrial evaluation of software engineering
methods and tools because they can avoid scale-up problems. The difference
between case studies and experiments is that experiments sample over the variables
that are being manipulated, while case studies select from the variables representing
the typical situation. An advantage of case studies is that they are easier to plan and
are more realistic, but the disadvantages are that the results are difficult to generalize
and harder to interpret, i.e. it is possible to show the effects in a typical situation,
but it requires more analysis to generalize to other situations [180].

If the effect of a process change is very widespread, a case study is more
suitable. The effect of the change can only be assessed at a high level of abstraction
because the process change includes smaller and more detailed changes throughout
the development process [97]. Also, the effects of the change cannot be identified
immediately. For example, if we would like to know if a new design tool increases
the reliability, it may be necessary to wait until after delivery of the developed
product to assess the effects on operational failures.
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Case study research is a standard method used for empirical studies in various
sciences such as sociology, medicine and psychology. Within software engineering,
case studies should not only be used to evaluate how or why certain phenomena
occur, but also to evaluate the differences between, for example, two design
methods. This means in other words, to assess which of the two methods are
most suitable in a certain situation [180]. An example of a case study in software
engineering is an investigation if the use of perspective-based reading increases
the quality of requirements specifications. A study like this cannot verify that
perspective-based reading reduces the number of faults that reaches test, since this
requires a reference group that does not use perspective-based techniques, but it may
bring light to the mechanisms in play in an inspection setting.

2.3.1 Case Study Arrangements

A case study can be applied as a comparative research strategy, comparing the
results of using one method or some form of manipulation, to the results of using
another approach. To avoid bias and to ensure internal validity, it is necessary to
create a solid base for assessing the results of the case study. Kitchenham et al.
propose three ways to arrange the study to facilitate this [97]:

* A comparison of the results of using the new method against a company baseline
is one solution. The company should gather data from standard projects and
calculate characteristics like average productivity and defect rate. Then it is
possible to compare the results from the case study with the figures from the
baseline.

* Assister project can be chosen as a baseline. The project under study uses the new
method and the sister project the current one. Both projects should have the same
characteristics, i.e. the projects must be comparable.

e If the method applies to individual product components, it could be applied
at random to some components and not to others. This is very similar to an
experiment, but since the projects are not drawn at random from the population
of all projects, it is not an experiment.

2.3.2 Confounding Factors and Other Aspects

When performing case studies it is necessary to minimize the effects of confounding
factors. A confounding factor is a factor that makes it impossible to distinguish the
effects of two factors from each other. This is important since we do not have the
same control over a case study as in an experiment. For example, it may be difficult
to tell if a better result depends on the tool or the experience of the user of the
tool. Confounding effects could involve problems with learning how to use a tool
or'method'when trying torassessiitsibenefits, or using very enthusiastic or skeptical
staff.
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There are both pros and cons with case studies. Case studies are valuable because
they incorporate qualities that an experiment cannot visualize, for example, scale,
complexity, unpredictability, and dynamism. Some potential problems with case
studies are:

e A small or simplified case study is seldom a good instrument for discovering
software engineering principles and techniques. Increases in scale lead to
changes in the type of problems that become most indicative. In other words,
that the problem may be different in a small case study and in a large case study,
although the objective is to study the same issues. For example, in a small case
study the main problem may be the actual technique being studied, and in a large
case study the major problem may be the amount of people involved and hence
also the communication between people.

e Researchers are not in full control of a case study situation. This is good, from
one perspective, because unpredictable changes frequently tell them much about
the problems being studied. The problem is that we cannot be sure about the
effects due to confounding factors.

Case studies are further elaborated in Chap. 5.

2.4 Experiments

Experiments are launched when we want control over the situation and want
to manipulate behavior directly, precisely and systematically. Also, experiments
involve more than one treatment to compare the outcomes. For example, if it is
possible to control who is using one method and who is using another method, and
when and where they are used, it is possible to perform an experiment. This type of
manipulation can be made in an off-line situation, for example in a laboratory under
controlled conditions, where the events are organized to simulate their appearance
in the real world. Experiments may alternatively be made on-line, which means that
the investigation is executed in the field in a real life context [6]. The level of control
is more difficult in an on-line situation, but some factors may be possible to control
while others may be impossible.

Experiments may be human-oriented or technology-oriented. In human-oriented
experiments, humans apply different treatments to objects, for example, two inspec-
tion methods are applied to two pieces of code. In technology-oriented experiments,
typically different tools are applied to different objects, for example, two test case
generation tools are applied to the same programs. The human-oriented experiment
has less control than the technology-oriented one, since humans behave differently
at different occasions, while tools (mostly) are deterministic. Further, due to learning
effects, a human subject cannot apply two methods to the same piece of code, which
two tools can do without bias.
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As mentioned earlier, considering the notion of context makes it possible to state
the difference between case studies and experiments more rigorously. Examples of
different contexts could be the application area and the system type [132]. In an
experiment, we identify the contexts of interest, its variables and sample over them.
This means that we select objects representing a variety of characteristics that are
typical for the organization in which the experiment is conducted and design the
research so that more than one value will be measured for each characteristic. An
example could be to investigate the effect of an inspection method with respect to
the faults found in test in two different systems, using two different programming
languages, for example, in a situation where an organization has moved from
one programming language to another. Then the different systems are the context
for evaluating the inspection method, and hence similar objects are needed in
the experiment. The inspection method becomes the independent variable and an
experiment will involve objects where the different programming languages are
used.

The design of the experiment should be made so that the objects involved
represent all the methods we are interested in. Also, it is possible to consider
the current situation to be the baseline (control), which means that the baseline
represents one level (or value) of the independent variable, and the new situation
to be the one we want to evaluate. Then the level of the independent variable for the
new situation describes how the evaluated situation differs from the control. Though,
the values of all the other variables should stay the same, for example, application
domain and programming environment.

2.4.1 Characteristics

Experiments are appropriate to investigate different aspects [72, 162], including:

e Confirm theories, i.e. to test existing theories.

¢ Confirm conventional wisdom, i.e. to test people’s conceptions.

» Explore relationships, i.e. to test that a certain relationship holds.

e Evaluate the accuracy of models, i.e. to test that the accuracy of certain models
is as expected.

e Validate measures, i.e. to ensure that a measure actually measures what it is
supposed to.

The strength of an experiment is that it can investigate in which situations the
claims are true and they can provide a context in which certain standards, methods
and tools are recommended for use.
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2.4.2 Experiment Process

Carrying out an experiment involves several different steps. The different steps are:

. Scoping

. Planning

. Operation

. Analysis and interpretation
. Presentation and package

[ I SO T (R

The experiment process is presented in Chap. 6, and the different steps are discussed
in more detail in Chaps. 7-11.

2.5 Empirical Strategies Comparison

The prerequisites for an investigation limit the choice of research strategy. A com-
parison of strategies can be based on a number of different factors. Table 2.2 is an
extension of the different factors discussed by Pfleeger [133]. The factors are further
described below.

Execution control describes how much control the researcher has over the study.
For example, in a case study, data is collected during the execution of a project.
If management decides to stop the studied project due to, for example, economical
reasons, the researcher cannot continue carrying out the case study. The opposite is
the experiment where the researcher is in control of the execution.

Measurement control is the degree to which the researcher can decide upon which
measures to be collected, and to include or exclude during execution of the study.
An example is how to collect data about requirement volatility. During the execution
of a survey we cannot include this kind of measures, but in a case study or in an
experiment it is possible to include them. In a survey, we can only collect data
regarding people’s opinion about requirement volatility.

Closely related, to the factors above, is the investigation cost. Depending on
which strategy is chosen, the cost differs. This is related to, for example, the size
of the investigation and the need for resources. The strategy with the lowest cost
is the survey, since it does not require a large amount of resources. The difference
between case studies and experiments is that if we choose to investigate a project
in a case study, the outcome from the project is some form of product that may be
retailed, i.e. it is an on-line investigation. In an off-line experiment the outcome is
some form of experience or knowledge which is not directly profitable in the same
way as a product.

Another important aspect to consider is the possibility to replicate the in-
vestigation. The purpose of a replication is to show that the result from the
original experiment is valid for a larger population. A replication becomes a ‘true’
replicationpifrityisppossiblestonreplicatesboth the design and the results. It is not



2.6 Replications 19

Table 2.2 Research strategy factors

Factor Survey Case study Experiment
Execution control No No Yes
Measurement control No Yes Yes
Investigation cost Low Medium High

Ease of replication High Low High

uncommon that the objective is to perform a replication, but the results, to some
extent, turn out differently than the results of the original study.

Another aspect related to replication, in the sense that it is concerned with studies
over time, is longitudinal studies [141]. The main difference between a longitudinal
study and a replication is that a longitudinal study is primarily conducted with the
same subjects and a replication is mostly a study conducted with new subjects. In
other words, replication means several studies and a longitudinal study is a single
study. The longitudinal study is conducted over a period of time, for example, a
survey can be done at several occasions, experiments can be repeated and the case
study may also be longitudinal if it is conducted over a period of time. A longitudinal
study is normally conducted to understand, describe or evaluate something that
changes over time [144].

The choice of empirical strategy depends on the prerequisites for the investiga-
tion, the purpose of it, available resources and how we would like to analyze the
collected data. Easterbrook et al. [S0] provide more advice on selection of research
strategies. Further, the borderline between different types of study is not always
clear cut. For example, a comparative case study may also be referred to as a quasi-
experiment in an industrial context, and a post-hoc observational study of software
engineering course outcomes, may also be referred to as a student experiment.

2.6 Replications

The replication of an experiment involves repeating the investigation under similar
conditions, while for example, varying the subject population. This helps finding
out how much confidence it is possible to place in the results of the experiment. If
the assumption of randomization is correct, i.e. the subjects are representative of a
larger population, replications within this population show the same results as the
previous performed experiment. If we do not get the same results, we have been
unable to capture all aspects in the experiment design that affect the result. Even if
it is possible to measure a certain variable or to replicate an experiment, it might be
difficult and too costly.
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Replications may be of different types [89, 155]:

e Close replications follow the original procedures as closely as possible. This type
is sometimes referred to as exact replications [155].

* Differentiated replications study the same research questions, using different
experimental procedures. They may also deliberately vary one or more major
conditions in the experiment.

Basili et al. [20], proposed a more fine grained classification:

 Strict replications (synonym to close and exact)

* Replications that vary variables intrinsic to the study

* Replications that vary variables intrinsic to the focus of the study

* Replications that vary the context variables in the environment in which the
solution is evaluated

* Replications that vary the manner in which the experiment is run

* Replications that extend the theory

In other fields of research, many different classifications schemes are used [64],
and no standardized terminology exist across fields of research. Neither is the
terminology in software engineering field established. The above presented distinc-
tion between close and differentiated replications is a starting point for specifying
replications in software engineering.

The advantage of close replications is that the known factors are kept under
control, building confidence in the outcome. However, close replications sometimes
require the same researchers to conduct the study, as they have tacit knowledge
about the experiment procedures which hardly can be documented [153, 154]. On
the other hand, there is a substantial risk for experimenter bias in close replication
studies [95]. Further, it is questioned that any replication in software engineering
may be classified as close, since so many factors may vary in the complex setting of
a software engineering experiment [89].

Differentiated replications on the other hand may be used for more exploratory
studies. If the differences in factors and settings are well documented and analyzed,
more knowledge may be gained from replicated studies. Factors to consider and
report for differentiated replication studies include [89]:

» Site where the experiment is conducted

e Experimenters conducting the experiment

e Design chosen for the experiment

* Instrumentation i.e. forms and other material
* Variables measured

* Subjects conducting the experiment

These factors are discussed in detail Chap. 8. Arguments are raised for replicating
original hypotheses, rather than specific experimental designs [123], i.e. in favor of
differentiated replications rather than close replications.
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2.7 Theory in Software Engineering

“A theory provides explanations and understanding in terms of basic concepts and
underlying mechanisms, which constitute an important counterpart to knowledge
of passing trends and their manifestation” [72]. Experiments may be conducted to
generate, confirm and extend theories, as mentioned above. However, the use of
theory is scarce in software engineering, as concluded by Hannay et al. in their
systematic literature review of software engineering experiments, 1993-2002 [72].
They found 40 theories in 23 articles, out of the 113 articles in the review. Only two
of the theories were used in more than one article!

Endres and Rombach [53] identifies a list of 50 findings which they refer to as
‘laws’, which is a notion for a description of a repeatable phenomenon in a natural
sciences context. Endres and Rombach apply this notion to software engineering.
Many of the listed ‘laws’ are more general than software engineering, for example,
“it takes 5,000 h to turn a novice into an expert”. In their notion, theories explain
the ‘laws’, hypotheses propose a tentative explanation for why the phenomenon
behaves as observed, while a conjecture is a guess about the phenomenon. Endres
and Rombach list 25 hypotheses and 12 conjectures appearing in the software
engineering literature.

Zendler [182] takes another approach, and defines a “preliminary software
engineering theory”, composed of three fundamental hypotheses, six central hy-
potheses, and four elementary hypotheses. There is a hierarchical relation between
the hypotheses, the fundamental being the most abstract, and elementary the most
concrete ones, originating from outcomes of experimental studies.

Gregor [70] describes five general types of theory, which may be adapted to the
software engineering context [72]:

1. Analysis: Theories of this type describe the object of study, and include, for
example, taxonomies, classifications and ontologies.

2. Explanation: This type of theories explains something, for example, why
something happens.

3. Prediction: These theories aim at predicting what will happen, for example, in
terms of mathematical or probabilistic models.

4. Explanation and prediction: These theories combine types 2 and 3, and is
typically what is denoted an “empirically-based theory”.

5. Design and action: Theories that describe how to do things, typically prescriptive
in the form of design science [76]. It is debated whether this category should be
denoted theory at all.

Sjeberg et al. [162] propose a framework for software engineering theories,
comprising of four main parts:

* Constructs

* Propositions
e Explanations
* Scope



22 2 Empirical Strategies

Table 2.3 Framework for software engineering theories, as proposed by Sjgberg et al. [162]

Archetype class Subclasses

Actor Individual, team, project, organisation or industry
Technology Process model, method, technique, tool or language
Activity Plan, create, modify or analyze (a software system)
Software system Software systems may be classified along many

dimensions, such as size, complexity, application
domain, business/scientific/student project or ad-
ministrative/embedded/real time, etc.

The constructs are the entities in which the theory are expressed, and to which
the theory offers a description, explanation or prediction, depending on the type
of theory as defined above. Propositions are made up from proposed relationships
between the constructs. The explanations originate from logical reasoning or
empirical observations of the propositions, that is, the relationship between the
constructs.

The scope of the theory defines the circumstances, under which the theory is
assumed to be applicable. Sjgberg et al. [162] suggest the scope being expressed in
terms of four archetype classes: actor, technology, activity and software system, see
Table 2.3.

Despite being attractive from a theoretical point of view, neither of these
proposed theory systems have had any major impact on the software engineering
field so far. Theories are important for the conceptualization and communication
of knowledge within a field of research, and are useful when aggregating existing
research and setting up replication studies. Theories may also be used for com-
munication with practitioners in decision-making, whether it be strategic choices of
technology, or project decisions based on prediction models. Hence, theory building
in software engineering should be developed, in order for the field to develop into a
mature field of science.

2.8 Aggregating Evidence from Empirical Studies

As the number of empirical studies grow, the need for aggregating evidence from
multiple empirical studies appear, for example, replication studies. Firstly, the
research should build upon each other so new research should always take existing
knowledge into consideration as its starting point. Secondly, several empirical
studies may together give answers to questions, which are not sufficiently answered
by individual studies in isolation. The collection and synthesis of empirical evidence
must meet scientific standards in itself.

Systematic literature reviews are means to collect and synthesize empirical evi-
dence from different sources. Kitchenham and Charters define systematic literature
reviews as “[a] form of secondary study that uses a well-defined methodology to



2.8 Aggregating Evidence from Empirical Studies 23

identify, analyze and interpret all available evidence related to a specific research
question in a way that is unbiased and (to a degree) repeatable” [96]. The empirical
studies, searched for, are referred to as primary studies while the systematic
literature review as such is referred to as a secondary study. Kitchenham and charters
provide guidelines for such reviews, which are summarized in Chap. 4.

A systematic literature review has a specific research question, similar to a
research question for a single empirical study. The research question is related to
the outcomes of the reviewed empirical studies, and is typically on the form: “Is
technology/method A better or not than B?” [106].

The search for empirical studies are done using database queries, as well
as searching journals, conference proceedings and grey literature, like technical
reports, based on keyword topics [96]. “Snowballing” procedures, i.e. following
the references from or to one paper to find other relevant papers, are also pro-
posed [145]. It should be noted that snowballing can be both backward and forward.
Backward snowballing means following the reference list and forward snowballing
refers to looking at papers citing the paper that has been found relevant.

If the research question is more general, or if the field of research is less explored,
a mapping study (also referred to as scoping study) may be launched instead.
Mapping studies have broader research questions, aiming to identify the state of
practice or research on a topic and typically identify research trends [106]. Due to
their broader scope, the search and classification procedures are less stringent, and
have more qualitative characteristics.

Both systematic literature reviews and mapping studies must have clear criteria
for inclusion and exclusion of studies as well as taxonomies for their classification.
For systematic literature reviews, a natural criterion is that the studies are empirical,
while mapping studies also may include non-empirical work.

When a set of empirical studies is collected on a topic, the synthesis or
aggregation takes place. Syntheses based on statistical methods are referred to as
meta-analysis. Examples of meta-analyses in software engineering include defect
detection methods [74, 121], agile methods [46], and pair programming [73].

If the meta-analysis procedures do not apply, descriptive synthesis has to be used.
These include visualization and tabulation of data and descriptive statistics of the
data [96]. The broader research question for a literature review, the more qualitative
methods are needed for its synthesis. Cruzes and Dyba present an overview of
qualitative synthesis methods [39].

The interest for and conduct of systematic literature reviews in software engi-
neering have grown substantially during the first decade of the twenty-first century.
Kitchenham et al. report 53 unique systematic literature reviews being published
between 2004 and 2008 [103,104]. In addition to the synthesis of empirical findings,
the conduct of the reviews lead to identification of improvement proposals, both in
the reporting of empirical studies as such, and to the databases in which they are
stored.

Systematic literature reviews are elaborated in more depth in Chap. 4.
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2.9 Empiricism in a Software Engineering Context

Why should we perform experiments and other empirical studies in software
engineering? The major reasons for carrying out quantitative empirical studies is
the opportunity of getting objective and statistically significant results regarding the
understanding, controlling, prediction, and improvement of software development.
Empirical studies are an important input to the decision-making in an improvement
seeking organization.

Before introducing new techniques, methods, or other ways of working, an
empirical assessment of the virtues of such changes is preferred. In this section, a
framework for evaluation of software process changes is presented, where different
empirical strategies are suggested in three different contexts: desktop, laboratory,
and development projects.

To be successful in software development there are some basic requirements [7,
8,42]:

. Understanding of the software process and product.
. Definition of process and product qualities.

. Evaluation of successes and failures.

. Information feedback for project control.

. Learning from experience.

. Packaging and reuse of relevant experience.
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Empirical studies are important to support the achievement of these require-
ments, and fit into the context of industrial and academic software engineering
research, as well as in a learning organization, seeking continuous improvement. An
example of a learning organization, called Experience Factory, is proposed by Basili
in conjunction with the Quality Improvement Paradigm [7], as further described in
the sequel of this section. This approach also includes a mechanism for defining and
evaluating a set of operational goals using measurement. This mechanism is called
Goal/Question/Metric (GQM) method [17], which is further described below. The
GQM method is described in more detail by van Solingen and Berghout [172].

2.9.1 Empirical Evaluation of Process Changes

An improvement seeking organization wants to assess the impact of process changes
(e.g., a new method or tool) before introducing them to improve the way of
working. Empirical studies are important in order to get objective and quantifiable
information on the impact of changes. In Sects. 2.2-2.4, three empirical strategies
are described: surveys, case studies and experiments, and they are compared in
Sect.2.5. This section describes how the strategies may be used when software
process changes are evaluated [177]. The objective is to discuss the strategies in
terms of a suitable way of handling technology transfer from research to industrial
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Fig. 2.1 Surveys, experiments and case studies

use. Technology transfer and some different steps in that process in relation to using
empirical strategies are discussed in Sect. 2.10.

In Fig. 2.1, the strategies are placed in appropriate research environments. The
order of the strategies is based on the ‘normal’ size of the study. The objective
is to order the studies based on how they typically may be conducted to enable a
controlled way of transferring research results into practice. As a survey does not
intervene with the software development to any large extent, there is a small risk.
An experiment is mostly rather limited in comparison to a real project and the case
study is typically aimed at one specific project. Furthermore, an experiment may
be carried out in a university environment prior to doing a study in industry, hence
lowering the cost and risk, see also Linkman and Rombach [113].

The research environments are:

Desktop The change proposal is evaluated off-line without executing the
changed process. Hence, this type of evaluation does not involve
people that apply the method, tool, etc. In the desktop environment, it
is suitable to conduct surveys, for example, through interview-based
evaluations and literature studies.

Laboratory The change proposal is evaluated in an off-line laboratory setting (in
vitro!), where an experiment is conducted and a limited part of the
process is executed in a controlled manner.

Real life The change proposal is evaluated in a real life development situation,
i.e. it is observed on-line (in vivoz). This involves, for example, pilot
projects. In this environment it is often too expensive to conduct con-
trolled experiments. Instead, case studies are often more appropriate.

In Fig.2.1, the placement of the different research environments indicates an
increase in scale and risk. In order to try out, for example a new design method

ILatin for “in the glass” and refers to chemical experiments in the test tube.

eal environment.
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in a large-scale design project and in a realistic environment, we may apply it in
a development project as a pilot study. This is, of course, more risky compared to
a laboratory or desktop study, as failure of the process change may, endanger the
quality of the delivered product. Furthermore, it is often more expensive to carry
out experiments and case studies, compared to desktop evaluation, as a desktop
study does not involve the execution of a development process. It should be noted
that the costs refer to the cost for investigating the same thing. For example, it is
probably less costly to first interview people about the expected impact of a new
review method than performing a controlled experiment, which in turn is less costly
than actually using the new method in a project with the risks involved in adopting
new technology.

Before a case study is carried out in a development project, limited studies in
either or both desktop and laboratory environments should be carried out to reduce
risks. However, there is no general conclusion on order and cost; for every change
proposal, a careful assessment should be made of which empirical strategies are
most effective for the specific situation. The key issue is to choose the best strategy
based on cost and risk, and in many cases it is recommended to start in a small scale
and then as the knowledge increases and the risk decreases the study is scaled up.

Independently of which research strategy we use, there is a need for methodology
support in terms of how to work with improvement, how to collect data and to store
the information. These issues are further discussed subsequently.

2.9.2 Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) [7] is a general improvement scheme
tailored for the software business. QIP is similar to the Plan/Do/Study/Act cycle [23,
42], and includes six steps as illustrated in Fig.2.2.

These steps are explained below [16].

1. Characterize. Understand the environment based upon available models, data,
intuition, etc. Establish baselines with the existing business processes in the
organization and characterize their criticality.

2. Set goals. On the basis of the initial characterization and of the capabilities that
have a strategic relevance to the organization, set quantifiable goals for successful
project and organization performance and improvement. The reasonable expec-
tations are defined based upon the baseline provided by the characterization step.

3. Choose process. On the basis of the characterization of the environment and the
goals that have been set, choose the appropriate processes for improvement, and
supporting methods and tools, making sure that they are consistent with the goals
that have been set.

4. Execute. Perform the product development and provide project feedback based
upon the data on goal achievements that are being collected.
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Fig. 2.2 The six steps of the Quality Improvement Paradigm [7]

5. Analyze. At the end of each specific project, analyze the data and the information
gathered to evaluate the current practices, determine problems, record findings,
and make recommendations for future project improvements.

6. Package. Consolidate the experience gained in the form of new, or updated and
refined, models and other forms of structured knowledge gained from this and
prior projects.

The QIP implements two feedback cycles [16], see also Fig.2.2:

e The project feedback cycle (control cycle) is the feedback provided to the
project during the execution phase. Whatever the goals of the organization,
the project used as a pilot should use its resources in the best possible way;
therefore quantitative indicators at project and task level are useful in order to
prevent and solve problems.

e The corporate feedback cycle (capitalization cycle) is the feedback loop
that is provided to the organization. It has the double purpose of providing
analytical information about project performance at project completion time
by comparing the project data with the nominal range in the organization and
analyzing concordance and discrepancy. Reusable experience is accumulated
in a form that is useful and applicable to other projects.

2.9.3 Experience Factory

The QIP is based on that the improvement of software development requires
continuous learning. Experience should be packaged into experience models that
can be effectively understood and modified. Such experience models are stored in a
repository, called experience base. The models are accessible and can be modified
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QIP focuses on a logical separation of project development (performed by
the Project Organization) from the systematic learning and packaging of reusable
experience (performed by the Experience Factory) [8]. The Experience Factory is
thus a separate organization that supports product development by analyzing and
synthesizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand, see Fig. 2.3.

The Experience Factory packages experience by “building informal, formal, or
schematised models and measures of various processes, products, and other forms
of knowledge via people, documents, and automated support” [16].

The goal of the Project Organization is to produce and maintain software. The
project organization provides the Experience Factory with project and environment
characteristics, development data, resource usage information, quality records, and
process information. It also provides feedback on the actual performance of the
models processed by the experience factory and utilized by the project.

The Experience Factory processes the information received from the develop-
ment organization, and returns direct feedback to each project, together with goals
and models tailored from similar projects. It also provides baselines, tools, lessons
learned, and data, tailored to the specific project.

To be able to improve, a software developing organization needs to introduce
new technology. It needs to experiment and record its experiences from develop-
ment projects and eventually change the current development process. When the
technology is substantially different from the current practice, the evaluation may
be off-line in order to reduce risks. The change evaluation, as discussed above, may
take the form of a controlled experiment (for detailed evaluation in the small) or
of a case study (to study the scale effects). In both cases, the Goal/Question/Metric
method, as described subsequently, provides a useful framework.
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Fig. 2.4 GQM model hierarchical structure

2.9.4 Goal/Question/Metric Method

The Goal/Question/Metric (GQM) [17,26, 172] method is based upon the assump-
tion that for an organization to measure in a purposeful way it must:

1. Specify the goals for itself and its projects,

2. Trace those goals to the data that is intended to define those goals operationally,
and

3. Provide a framework for interpreting the data with respect to the stated goals.

The result of the application of the GQM method is a specification of a measurement
model targeting a particular set of issues and a set of rules for the interpretation of
the measurement data.

The resulting measurement model has three levels, as illustrated by the hierar-
chical structure in Fig. 2.4:

1. Conceptual level (Goal). A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to
a particular environment. Objects of measurement are products, processes, and
resources (see also Chap. 3).

2. Operational level (Question). A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based
on some characterization model. Questions try to characterize the objects of
measurement (product, process and resource) with respect to a selected quality
aspect and to determine its quality from the selected viewpoint.

3. Quantitative level (Metric). A set of data is associated with every question in
order to answer it in a quantitative way (either objectively or subjectively).

The process of setting goals is critical to the successful application of the
GQM method. Goals are formulated based on (1) policies and strategies of the
organization, (2) descriptions of processes and products, and (3) organization
models. When goals have been formulated, questions are developed based on these
goals. Once the questions have been developed, we proceed to associating the
questions.with appropriate metrics.
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Practical guidelines of how to use GQM for measurement-based process im-
provement are given by Briand et al. [26], and van Solingen and Berghout [172].
In Chap. 3, general aspects of measurement are further described.

2.10 Empirically-Based Technology Transfer

Empirical studies have a value stand-alone, but they can also be part of a knowledge
exchange and improvement endeavor jointly between academia and industry, for
example in technology transfer as also discussed above. Software engineering is
an applied research area, and hence to perform research on industrially relevant
problems is expected. It is in many cases insufficient to just do academic research
on, for example, requirements engineering or software testing with the motivation
that these areas are challenging in industry. Software engineering is preferably
conducted jointly by academia and industry to enable transfer of knowledge in
both directions and at the end transfer of new methods, technologies and tools from
academia to industry. Joint research provides an excellent opportunity to improve
industrial software development based on concrete evidence, and hence being a
good example of evidence-based software engineering [48, 100].

Based on a long-term collaborative venture, a model for technology transfer was
documented and presented by Gorschek et al. [66]. The seven steps in the model
are summarized below to illustrate how different empirical studies and in particular
experiments can be used in empirically driven improvement. The model is illustrated
in Fig.2.5. The model is closely related to the discussion about software process
improvement in Sect. 2.9. The main focus of the model is on the usage of different
empirical methods to create a solution to a real industrial problem and bring it to
industrial application.

Identification of industrial problem/issue. The first step is to identify actual in-
dustrial challenges in a specific industrial context, which implies that the researcher
is present at the industrial partner(s). The identification of challenges may be done
using, for example, a survey or interviews, which are briefly presented in Sect.2.2.
The objective is to capture the challenges and in particular issues that are suitable
for research. Any challenge identified must be possible to formulate as a research
problem to avoid that the researcher ends up in the role of a consultant addressing
short-term problems.

A major benefit with doing this step thoroughly is that it creates an opportunity
to build a joint trust and ensures that the industrial partner(s) and its employees get
used to have researchers present in their environment. At this stage, commitment
from both management and other practitioners involved in the joint effort is crucial
to ensure future success according to Wohlin et al. [179].
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Fig. 2.5 Technology transfer model (Adapted from the description by Gorschek et al. [66])

Problem formulation. Based on the challenge(s) identified, the challenge should
be formulated as a research problem and research questions should be specified.
If several different challenges are identified there is a need to prioritize which to
address. Furthermore, a main contact person for the chosen challenge should be
identified. The person should preferably not only be appointed; it should be a person
who would like to be the driver within the company and act as a champion for the
research collaboration. This includes helping to get in contact with the right people
in the company, and to help ensuring that the researchers get access to systems,
documentation and data when needed.

As a natural part of the formulation of the research problem, the researchers
conduct a literature search. This may be done as a systematic literature review
as presented in Chap.4. A literature survey is needed to know about existing ap-
proaches to the identified industrial challenge. It provides a basis for understanding
the relationship between approaches available and the actual industrial needs.

Candidate solution. Based on available approaches and the actual needs, a can-
didate solution is developed, which may include tailoring to the current processes,
methods, technologies and tools used at the company. The solution is preferably de-
veloped in close collaboration with the industrial partner(s) so that the applicability
can be continuously ensured. Although a specific solution for a company may be
derived, the intention of the researcher is to develop a generic solution, which then
is instantiated in a specific context.
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Validation in academia. A first validation of the proposed solution is preferably
conducted in an academic environment to minimize the risk, i.e. an off-line valida-
tion. In many cases this may be conducted as an experiment as described in several
chapters of this book or as a case study of a student project. An overview of case
study research is provided in Chap. 5. The validation in an academic environment
may be conducted with either students as subjects or with representatives from the
industrial partner(s).

The main objective in this step is to capture any obvious flaws in the proposed
solution and to identify improvements proposals of the candidate solution. This is
done in an academic setting to ensure that the best possible solution is available
when bringing it to industry.

Static validation. In the static validation, industry representatives evaluate the
candidate solution off-line. This may be done through a presentation of the candidate
solution followed by either interviews of different industry representatives, prefer-
ably in different affected roles, or joint workshops. In addition, it is preferable to
make a general presentation to the organization to make them aware of the proposed
solution at an early stage. This also gives an opportunity for the personnel to raise
their voice at an early stage. Hopefully, this will help overcome any resistance once
the new solution is going to be integrated to the way software is developed within
the organization.

Based on the static validation, the new solution may need to be changed based on
the feedback. The seven steps are all iterative, and hence it is more a matter of which
order they start and they should definitively not be viewed as a waterfall approach
without feedback cycles.

Dynamic validation. Once the new solution passes the static validation and there
is agreement and commitment to implement the new solution, it is time to move to
a dynamic validation. This is preferably done as a pilot evaluation. Exactly how to
conduct the validation depends on the type of solution. The new solution may be
used in a project, a subproject or for parts of a system, or for a specific activity.
Independently, it is recommended that the dynamic validation be followed closely
to evaluate the solution. The dynamic solution may be studied using a case study
approach as described in Chap. 5.

Release solution. A generic solution must be tailored to each unique situation.
There is a need to ensure that any research solution is properly handed over to
an industrial champion and that the company has sufficient support in terms of
descriptions, training and potential tool support. The latter is not primarily the
responsibility of the researchers, but they must support their collaborative partner(s)
to ensure that the transfer of the new solution is properly in place and integrated into
the organization before moving to the next industrial challenge.

Preferably, the broader usage is also studied empirically through a case study.
This will help obtaining empirical evidence for the new solution developed in the
research collaboration.
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Concluding remark. The transfer model outlined illustrates how different em-
pirical strategies may be applied to support transfer of new research results from
identification of needs to actual industrial usage.

Finally, it is interesting to note that the industrial representatives are primarily
interested in the specific tailoring to their environment, while from a researchers
perspective it becomes a case for the generic solution. Thus, the collaborative
partners may have different main focuses, but at the end they both benefit from
the joint effort. The industrial partner gets a solution to an identified challenge and
the researchers are able to evaluate a research result in a real industrial environment.
Gorschek and Wohlin [65] present an example of a generic solution for requirements
abstraction and a particular industrial instantiation of the approach is presented by
Gorschek et al. [67] separately.

2.11 Ethics in Experimentation

Any empirical research activity involving human subjects must take ethical aspects
into consideration. Some aspects are regulated by national laws, others are not
regulated at all. Andrews and Pradhan identified ethical issues in software engi-
neering, and found existing policies to be insufficient [3]. Hall and Flynn surveyed
ethical practice and awareness in the UK, and found alarming unawareness [71],
and nothing indicates this country being an exception.

Singer and Vinson initiated a discussion on ethical issues [158], continued
to discuss cases of ethical issues [159], and provided practical guidelines for the
conduct of empirical studies [174]. They identified four key principles:

* Subjects must give informed consent to their participation, implying that they
should have access to all relevant information about the study, before making
their decision to participate or not. Their decision must be explicit and free, also
with respect to implicit dependencies on managers, professors etc.

e The study should have scientific value in order to motivate subjects to expose
themselves to the risks of the empirical study, even if these are minimal.

e Researchers must take all possible measures to maintain confidentiality of data
and sensitive information, even when this is in conflict with the publication
interests.

e Weighing risks, harms and benefits, the beneficence must overweigh, not only for
the individual subjects, but also for groups of subjects and organizations.

These principles are turned into more practical guidelines below, related to plan-
ning, conduct and reporting of an experimental study. We also refer to Sieber [156]
for a checklist of risks for subjects to be addressed in experimentation.

Ethical review. In countries where legislation require an ethical review for studies
involving human subjects, like Canada, USA and Australia, the procedures and
documentation for such studies have to be followed to enable the study. The
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review implies a proposal being put before an Ethical Review Board (ERB) at the
university or government agency, for approval. These procedures are mostly derived
from the needs in biomedical research, and thus generally not tailored to software
engineering needs. Vinson and Singer mention, for example, that in Canada, it is
not clear whether studies using source code (being written by humans and revealing
information about them) and its data are subject to the review procedures [174].
The documentation needed in the review typically includes a description of
the project, comprising details on subjects and treatments, documentation of how
informed consent is obtained, and a review of ethical aspects of the project.

Informed consent. The basis for a human-oriented empirical study (e.g. an
experiment) is that subjects are participating voluntarily, and that they have enough
information to make the decision to participate or not. Further, this includes the
option to withdraw from the study any time, without any penalty for the subject. In
order to make this decision process clear and explicit, consent should be given in
writing.

A consent form typically comprises the following elements [174]:

* Research project title: for identification purposes.

e Contact information: both research and ethics contact.

e Consent and comprehension: the subjects state that they understand the condi-
tions for the project and accept them.

e Withdrawal: states the right to withdraw without penalties.

* Confidentiality: defined the promises about confidential handling of data and
participation.

* Risks and benefits: explicitly listing what the subjects risk and gain.

* Clarification: the right for the subject to ask questions for clarification of their
role in the study.

e Signature: mostly by both subject and researcher, one copy for each, to indicate
it is a mutual agreement.

In some experimental designs, full disclosure of the research goal and procedures
may compromise the conduct of the experiment as such. For example, knowing the
hypothesis beforehand, the subjects may change their behavior accordingly. Then,
partial disclosure may be used, meaning that the experimental goals and procedures
are presented at a higher level of abstraction.

For empirical studies in companies (in vivo), the consent must include both
the organization and the individual subjects. In particular, the subjects cannot be
ordered to participate, and are free to withdraw without penalties. Further, issues
of confidentiality and sensitive results within the company also must be taken into
consideration.

The consent may be differentiated on whether it is given for the goals of the
current study, or if data may be used for further studies with different goals.

Confidentiality. The subjects must be sure that any information they share with
researchers will remain confidential. Three aspects on confidentiality are [174]:
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e Data privacy, referring to restricted access to data, imposed by for example
password protection and encryption.

e Data anonymity, addressed by keeping the identities of subjects apart from the
data.

* Anonymity of participation, meaning that the consent decision should be kept
secret.

Since the empirical studies (including experiments) aim at drawing general
conclusions, there is no principal conflict with keeping the specifics confidential.
Data privacy issues can also be solved by good working practices. However, as the
number of subjects often are small, there is a risk that information may be traced
to individuals, even if anonymized, thereby threatening anonymity. Further, for the
external validity of the study (see Sect. 8.7), information about the study context
should be reported, which may conflict the anonymity.

The anonymity of participation is the hardest to achieve. Students in a class,
which are enrolled in experiments, may have the formal right to decline participa-
tion, but it is hard to hide from the researcher which students participate or not.
Similarly in companies, managers would easily know who is participating in the
study. Vinson and Singer advice that “for studies involving students, researchers
should avoid recruiting students in the classroom setting and should avoid trying to
recruit their own students” [174] — an advice followed by few.

Sensitive results. Outcomes from any empirical study may be sensitive in different
respects for different stakeholders. The individual performance of a subject is one
example, which managers or professors would like to see. The conclusions from the
empirical study may also be sensitive, especially if a sponsor of the project has a
stake in it. The results may also be sensitive to the researchers, for example, if an
experiment does not support their hypotheses.

These situations stress the moral standards of the stakeholders. Possible measures
to take to prepare for these situations include different kinds of independency. For
results sensitive to:

e Subjects, make sure that confidentiality procedures apply, independently of facts
revealed (crime exempted [159]),

* Sponsors, include clear statements on rights for independent publications of the
anonymized results in the informed consent form for companies, and in research
project contracts,

* Researchers, consider having peers to perform statistical analyses on anonymized
data (both subjects and scales) independently from the experimenters, especially
when the treatment is designed by the experimenters themselves. This also
reduces the threat of experimenter expectancies.

These actions reduce the risk of being stuck in ethical dilemmas, and increases the
validity of all empirical studies.

Inducement. In recruiting subjects for an experiment, there must be inducements
to motivate their participation. The experience and knowledge gained by applying
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a new method may be inducement enough. In order to treat all participants fair, all
subjects should be given the opportunity to learn about all treatments, even if the
experimental design does not require it.

Some monetary inducement may also be involved, for example, in the form of
cash payment, participation in a lottery, or, for professional subjects, their ordinary
salary. Independently of form, the inducement must be balanced to ensure that the
consent to participate really is voluntary, and not forced by too large economic or
other inducements.

Feedback. To maintain long term relationships and trust with the subjects of a
study, feedback of results and analysis are important. Subjects must not agree on the
analysis, but should be given the opportunity to get information about the study and
its results. If feasible, from a confidentiality point of view, data from individual’s
performance may be reported back together with the overall analysis.

Conclusion on ethics. Singer and Vinson ask in their early work for a code of
ethics for empirical software engineering [159]. Still, 10 years later, the community
has not yet developed one; the closest is Vinson and Singer’s guidelines [174],
which are summarized above. Research funding agencies start to require general
codes of ethics be applied, which may not fit the purpose. Concrete and tailored
ethical guidelines for empirical software engineering research would benefit both
the subjects, which they aim to protect, and the development of the research field
as such.

2.12 Exercises

2.1. What is the difference between qualitative and quantitative research?

2.2. What is a survey? Give examples of different types of surveys in software
engineering.

2.3. Which role plays replications and systematic literature reviews in building
empirical knowledge?

2.4. How can the Experience Factory be combined with the Goal/Question/Metrics
method and empirical studies on a technology transfer context?

2.5. Which are the key ethical principles to observe then conducting experiments?
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Chapter 3
Measurement

Software measurement is crucial to enable control of projects, products and
processes, or as stated by DeMarco: “You cannot control what you cannot mea-
sure” [41]. Moreover, measurement is a central part in empirical studies. Empirical
studies are used to investigate the effects of some input to the object under study. To
control the study and to see the effects, we must be able to both measure the inputs
in order to describe what causes the effect on the output, and to measure the output.
Without measurements, it is not possible to have the desired control and therefore
an empirical study cannot be conducted.

Measurement and measure are defined as [56]: “Measurement is the process by
which numbers or symbols are assigned to attributes of entities in the real world in
such a way as to describe them according to clearly defined rules.” A measure is
the number or symbol assigned to an entity by this relationship to characterize an
attribute.

Instead of making judgement directly on the real entity, we study the measures
and make the judgement on them. The word metric or metrics is also often used
in software engineering. Two different meanings can be identified. First of all,
software metrics is used as a term for denoting the field of measurement in software
engineering. The book by Fenton and Pfleeger [56] is an example of this. Secondly,
the word metric is used to denote an entity which is measured, for example, lines
of code (LOC) is a product metric. More precisely, it is a measure of the size of the
program. Software measurement is also further discussed by Shepperd [150].

In this chapter, basic measurement theory is presented. Section 3.1 describes the
basic concept of measurement theory, and the different scale types of measures.
Examples of measures in software engineering and the relation to the statistical
analysis are presented in Sect.3.2, while practical aspects of measurements are
discussed in Sect. 3.3.

ineering, 37
erlag Berlin Heidelberg 2012
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3.1 Basic Concepts

A measure is a mapping from the attribute of an entity to a measurement value,
usually a numerical value. Entities are objects we can observe in the real world.
The purpose of mapping the attributes into a measurement value is to characterize
and manipulate the attributes in a formal way. One of the basic characteristics
of a measure is therefore that it must preserve the empirical observations of the
attribute [57]. That is, if object A is longer than object B, the measure of A must be
greater than the measure of B.

When we use a measure in empirical studies, we must be certain that the measure
is valid. To be valid, the measure must not violate any necessary properties of the
attribute it measures and it must be a proper mathematical characterization of the
attribute.

A valid measure allows different objects to be distinguished from one another,
but within the limits of measurement error, objects can have the same measurement
value. The measure must also preserve our intuitive notions about the attribute and
the way in which it distinguishes different objects [97]. A measure must be valid
both analytically and empirically. Analytical validity of a measure relates to its
ability to capture accurately and reliably the item of interest. Empirical validity
(sometimes referred to as statistical or predictive ability) describes how well, for
example, a score correlates to something measured in another context.

Effect size is a simple way of quantifying the difference between two groups.
This is particularly important in experimentation, since it may be possible to show
a statistical significant difference between two groups, but it may not be meaningful
from a practical point of view. In most cases, it is possible to show statistically
significant differences with a sufficiently large number of subjects in an experiment,
but it does not necessarily mean that it is meaningful from a practical point of view.
It may be the case that the difference is too small or the cost to exploit the difference
is simply too high.

The mapping from an attribute to a measurement value can be made in many
different ways, and each different mapping of an attribute is a scale. If the attribute
is the length of an object, we can measure it in meters, centimeters or inches, each
of which is a different scale of the measure of the length.

As a measure of an attribute can be measured in different scales, we sometimes
want to transform the measure into another scale. If this transformation from
one measure to another preserves the relationship among the objects, it is called
an admissible transformation [56]. An admissible transformation is also called
rescaling.

With the measures of the attribute, we make statements about the object or the
relation between different objects. If the statements are true even if the measures
are rescaled, they are called meaningful, otherwise they are meaningless [27]. For
example, if we measure the lengths of objects A and B to 1 m and 2 m respectively,
we can make the statement that B is twice as long as A. This statement is true even
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if we rescale the measures to centimeters or inches, and is therefore meaningful.
Another example, we measure the temperature in room A and room B to 10°C and
20°C, and make the statement that room B is twice as warm as room A. If we
rescale the temperatures to the Fahrenheit scale, we get the temperatures 50°F and
68°F. The statement is no longer true and is therefore meaningless.

Depending on which admissible transformation that can be made on a scale,
different scale types can be defined. Scales belonging to a scale type, share the
same properties and the scale types are more or less powerful in the sense that
more meaningful statements can be made the more powerful the scale is. The most
commonly used scale types are described below.

Measures can also be classified in two other ways: (1) if the measure is direct
or indirect, or (2) if the measure is objective or subjective. These classifications are
further discussed later in this chapter.

3.1.1 Scale Types

The most common scale types are the following' [27,56,57]:

Nominal The nominal scale is the least powerful of the scale types. It only maps
the attribute of the entity into a name or symbol. This mapping can be
seen as a classification of entities according to the attribute.

Possible transformations for nominal scales are those that preserve the
fact that the entities only can be mapped one-to-one.

Examples of a nominal scale are classification, labeling and defect
typing.

Ordinal ~ The ordinal scale ranks the entities after an ordering criterion, and is
therefore more powerful than the nominal scale. Examples of ordering
criteria are “greater than”, “better than”, and “more complex”.

The possible transformations for the ordinal scale are those that preserve
the order of the entities, i.e. M’ = F (M) where M’ and M are different
measures on the same attribute, and F is a monotonic increasing
function.

Examples of an ordinal scale are grades and software complexity.

Interval ~ The interval scale is used when the difference between two measures
are meaningful, but not the value itself. This scale type orders the values
in the same way as the ordinal scale but there is a notion of “relative
distance” between two entities. The scale is therefore more powerful
than the ordinal scale type.

IFenton et al. [56,57] present a fifth scale type. The scale type is the absolute scale and is a special
case of the ratio scale. The absolute scale is used when the value itself is the only meaningful
transformation. An example of an absolute scale is counting.
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Possible transformations with this scale type are those where the
measures are a linear combination of each other, i.e. M’ = aM + B
where M’ and M are different measures on the same attribute. Measures
on this scale are uncommon in software engineering.
Examples of an interval scale are temperature measured in Celsius or
Fahrenheit.

Ratio If there exists a meaningful zero value and the ratio between two
measures is meaningful, a ratio scale can be used.
Possible transformations are those that have the same zero and the scales
only differs by a factor, i.e. M' = aM where M’ and M are different
measures on the same attribute.
Examples of a ratio scale are length, temperature measured in Kelvin
and duration of a development phase.

The measurement scales are related to qualitative and quantitative research.
Furthermore, it relates to which statistics can be used on the measures. This is
further discussed in Chap. 10. According to Kachigan [90], qualitative research is
concerned with measurement on the nominal and ordinal scales, and quantitative
research treats measurement on the interval and ratio scales.

3.1.2 Objective and Subjective Measures

Sometimes, the measurement of an attribute cannot be measured without consider-
ing the viewpoint they are taken from. We can divide measures into two classes:

Objective  An objective measure is a measure where there is no judgement in
the measurement value and is therefore only dependent on the object
that is being measured. An objective measure can be measured several
times and by different researchers, and the same value can be obtained
within the measurement error. Examples of objective measures are
lines of code (LOC), and delivery date.

Subjective A subjective measure is the opposite of the objective measure. The
person making the measurement contributes by making some sort of
judgement. The measure depends on both the object and the viewpoint
from which they are taken. A subjective measure can be different if the
object is measured again. A subjective measure is mostly of nominal
or ordinal scale type. Examples of subjective measures are personnel
skill, and usability.

Subjective measures are always subject to potential bias. This is further discussed
in Sect. 3.3.
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3.1.3 Direct or Indirect Measures

The attributes that we are interested in are sometimes not directly measurable. These
measures must be derived through other measures that are directly measurable. To
distinguish the direct measurable measures from derived measures, we divide the
measures into direct and indirect measures.

Direct A direct measurement of an attribute is directly measurable and does not
involve measurements on other attributes. Examples of direct measures
are lines of code, and the number of defects found in test.

Indirect An indirect measurement involves the measurement of other attributes.
The indirect measure is derived from the other measures. Examples of
indirect measures are defect density (number of defects divided by the
number of lines of code), and programmers productivity (lines of code
divided by the programmer’s effort).

3.2 Measurements in Software Engineering

The objects that are of interest in software engineering can be divided into three
different classes:

Process The process describes which activities that are needed to produce the
software.
Product The products are the artifacts, deliverables or documents that results

from a process activity.
Resources Resources are the objects, such as personnel, hardware, or software,
needed for a process activity.

In each of the classes we also make a distinction between internal and external
attributes [55]. An internal attribute is an attribute that can be measured purely in
terms of the object. The external attributes can only be measured with respect to
how the object relates to other objects. Examples of different software measures are
shown in Table 3.1.

Often in software engineering, software engineers want to make statements of
an external attribute of an object. Unfortunately, the external attributes are mostly
indirect measures and must be derived from internal attributes of the object. The
internal attributes are mostly direct measures.

The measures are often part of a measurement program. Building software
measurement programs is discussed by, for example, Grady and Caswell [68] and
Hetzel [75].

Measurements in software engineering are different from measurements in other
domains, for example, physics. In those domains, it is often clear, which the
attributes are, and how they are measured. In software engineering, however, it is
sometimes difficult to define an attribute in a measurable way with which everyone
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Table 3.1 Examples of measures in software engineering

Class Examples of objects Type of attribute Example of measures
Process Testing Internal Effort
External Cost
Product Code Internal Size
External Reliability
Resource Personnel Internal Age
External Productivity

agrees [56]. Another difference is that it is difficult to prove that the measures are
anything else but nominal or ordinal scale types in software engineering. Validation
of the indirect measures is more difficult as both the direct measures and the models
to derive the external measure have to be validated.

When conducting empirical studies, we are interested in the scale types of
the measures as the statistical analysis depends on them. Formally, the statistical
analysis methods depend upon the scale type, but the methods are mostly rather
robust regarding scale type. The basic rule is that the more powerful scale types we
use, the more powerful analysis methods we may use, see Chap. 10.

Many measures in software engineering are often measured with nominal or
ordinal scales, or it is not proven that it is a more powerful scale type. This means
that we cannot use the most powerful statistical analysis methods, which requires
interval or ratio scales, for the empirical studies we conduct.

Briand et al. [27] argue that we can use the more powerful statistical analysis
even if we cannot prove that we have interval or ratio scales. Many of the more
powerful statistical methods are robust to non-linear distortions of the interval scale
if the distortions are not too extreme. If we take care and carefully consider the
risks, we can make use of the more powerful statistical methods and get results that
otherwise would be infeasible without a very large sample of measures.

3.3 Measurements in Practice

In practice metrics are defined by the researcher and then collected during the
operation phase of the empirical study. When it comes to how the metrics should
be collected it is an advantage if it does not require too much effort by the subjects
in the study. In many experiments subjects fill out forms in order to provide the data,
but it is also possible to define instrumenting systems where data is automatically
collected, for example, by the development environment. Lethbridge et al. [111]
discuss several general techniques for collection.

Since the collected metrics are the basis for the further analysis, the quality of the
collected metrics is important for the continued analysis of the study. This means
that it is important to really understand what kind of metrics are collected and to be
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certain about what scale-type they belong to. It is also important to understand what
distribution they represent, in particular if they are normally distributed or not.

When it comes to the distribution, this could be investigated by descriptive
statistics. The data can, for example, be plotted in a graph, or another technique
for analyzing to what extent the data is normally distributed can be used. This is
further elaborated in Chap. 10. When it comes to the scale-type, this is based on
how the metrics are defined and must be understood by the researcher when the
metrics are defined.

How the metrics are defined can greatly affect how good they are in displaying
what the researcher is interested in. For example, Kitchenham et al. [102] compare
two ways of displaying productivity and show that a scatter plot displaying effort
versus size gives better information than a chart showing productivity over time.
A general advice is to not use metrics that are constructed from the ratio of two
independent measures unless one is sure to understand the measure’s implication.

During the operation of the study it is important to make sure that the collected
data is correct. This means that the researcher should apply quality assurance
procedures during the experiment, for example, by reviewing how subjects fill
out forms, checking consistencies between different values, etc. Data validation is
further discussed in Chap. 8.

A factor related to this concerns who is the inventor or owner of the aspects that
are investigated in an experiment. Ideally someone else than the inventor of new
methods should evaluate them in experiments and other research approaches, as
recommended by Kitchenham et al. [98]. The inventor of a method naturally wants
the method to perform well and there is always a risk that the researcher consciously
or unconsciously selects metrics that are favorable for the investigated method. If
it is known by the subjects that the researcher is the inventor of the investigated
method this may also affect their performance. If experiments are carried out where
own methods are studied, the design and selection of metrics could be reviewed by
external researchers.

3.4 Exercises

3.1. What are measure, measurement and metric and how do they relate?

3.2. Which are the four main measurement scale types?

3.3. What are the difference between a direct and an indirect measure?

3.4. Which three classes are measurements in software engineering divided into?

3.5. What are internal and external attributes and how are they mostly related to
direct and indirect measures?



Chapter 4
Systematic Literature Reviews

Systematic literature reviews are conducted to “identify, analyse and interpret all
available evidence related to a specific research question” [96]. As it aims to give
a complete, comprehensive and valid picture of the existing evidence, both the
identification, analysis and interpretation must be conducted in a scientifically and
rigorous way. In order to achieve this goal, Kitchenham and Charters have adapted
guidelines for systematic literature reviews, primarily from medicine, evaluated
them [24] and updated them accordingly [96]. These guidelines, structured accord-
ing to a three-step process for planning, conducting and reporting the review, are
summarized below.

4.1 Planning the Review

To plan a systematic literature review includes several actions:

Identification of the need for a review. The need for a systematic review
originates from a researcher aiming to understand the state-of-the-art in an area,
or from practitioners wanting to use empirical evidence in their strategic decision-
making or improvement activities. If there are more or less systematic literature
reviews available in the field, they should be appraised regarding scope and quality,
to evaluate if they are sufficient to meet the current needs for a review. A systematic
literature review may be viewed as a research method for making a literature review.

Specifying the research question(s). The area of the systematic review and the
specific research questions set the focus for the identification of the primary studies,
the extraction of data from the studies and the analysis. Hence, the research
questions must be well thought through and phrased. Aspects to take into account
in phrasing the research questions include [96]:

e The population in which the evidence is collected, i.e. which group of people,
programs or businesses are of interest for the review?

45
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e The intervention applied in the empirical study, i.e. which technology, tool or
procedure is under study?

e The comparison to which the intervention is compared, i.e. how is the control
treatment defined? In particular the ‘placebo’ intervention is critical, as “not
using the intervention” is mostly not a valid action in software engineering.

e The outcomes of the experiment should not only be statistically significant, but
also be significant from a practical point of view. For example, it is probably not
interesting that an outcome is 10% better in some respect if it is twice as time
consuming.

e The context of the study must be defined, which is an extended view of the
population, including whether it is conducted in academia or industry, in which
industry segment, and also the incentives for the subjects [78, 132].

e The experimental designs to include in the research question must also be
defined.

Staples and Niazi recommend the scope of a systematic literature review be
limited by clear and narrow research questions to avoid inmanagable studies [166].

Developing a review protocol. The review protocol defines the procedures for the
systematic literature review. It also acts as a log for conducting the review. Hence,
it is a “living” document that is of importance both for the practical conduct of the
review, and for its validity. Kitchenham and Charters propose the following items
be covered in a review protocol [96]:

e Background and rationale

* Research questions

e Search strategy for primary studies

e Study selection criteria

* Study selection procedures

* Study quality assessment checklists and procedures
» Data extraction strategy

* Synthesis of the extracted data

e Dissemination strategy

e Project timetable

The protocol is preferably reviewed by peers to ensure its consistency and validity.
Experience from systematic literature review stresses the importance of a pre-review
study to help scoping the research questions, as well as being open to modifying
research questions during the protocol development, as the problem under study
becomes clearer [24].

4.2 Conducting the Review

Conducting the review means setting the review protocol into practice. This
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Identification of research. The main activity in this step involves specifying
search strings and applying them to databases. However, it also includes manual
searches in journals and conference proceedings, as well as searching researchers’
web sites or sending questions to researchers. Systematically searching for primary
studies based on references to and from other studies, is called “snowballing” [145].

The search strategy is a trade-off between finding all relevant primary studies,
and not getting an overwhelming number of false positives, which must be excluded
manually [43]. A false positive is an outcome that is wrongly positive when it should
not be; in this case, it means that a paper is found and hence assumed to be of
interest, and later it turns out that it is not and therefore it has to be removed. The
search string is developed from the area to be covered and the research questions.
Using multiple databases is a necessity to cover all relevant literature, but it also
creates duplicates, which must be identified and removed. At the end, it must
be accepted that the papers found are a sample of the population of all papers
on a specific topic. The key issue is that the sample is indeed from the intended
population.

The published primary studies tend to have a publication bias, which means that
(in some sense) positive results are more likely to be published than negative results.
Hence, also grey literature, like technical reports, theses, rejected publications, and
work in progress, should be searched for [96].

The search results and a log of the actions taken should be stored, preferably
using a reference management system.

Selection of primary studies. The basis for the selection of primary studies is
the inclusion and exclusion criteria. The criteria should be developed beforehand, to
avoid bias. However, they may have to be adjusted during the course of the selection,
since all aspects of inclusion and exclusion are not apparent in the planning stage.

The identified set of candidate studies are processed related to the selection
criteria. For some studies, it is sufficient to read the title or abstract to judge
the paper, while other papers need a more thorough analysis of, for example, the
methodology or conclusions to determine its status. Structured abstracts [30] may
help the selection process.

As the selection process is a matter of judgments, also with well defined selection
criteria, it is advised that two or more researchers assess each paper, or at least a
random sample of the papers. Then the inter-rater agreement may be measured using
the Cohen Kappa statistic [36] and be reported as a part of the quality assessment
of the systematic literature review. However, it should be noted that a relatively
high Cohen Kappa statistics may be obtained due to that many papers found in
the automatic search are easily excluded by the researchers when assessing them
manually. Thus, it may be important to conduct the assessment in several steps, i.e.
start by removing those papers that are obviously not relevant although found in
the search.

Study quality assessment. Assessing the quality of the primary studies is impor-
tant, especially when the studies report contradictory results. The quality of the
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primary studies may be used to analyze the cause of contradicting results or to
weight the importance of individual studies when synthesizing results.

There is no universally agreed and applicable definition of “study quality”.
Attempts to map quality criteria from medicine did not map to the quality range
of software engineering studies [47].

The most practically useful means for quality assessment are checklists, even
though their empirical underpinning may be weak. A study by Kitchenham et al.
also showed that at least three reviewers are needed to make a valid assess-
ment [105]. Checklists used in quality assessment of empirical studies are available
in the empirical software engineering literature [96, 105, 145].

The quality assessment may lead to some primary studies being excluded, if the
study quality is part of the selection criteria. It is also worth noting that the quality
of the primary studies should be assessed, not the quality of the reporting. However,
it is often hard to judge the quality of a study if it is poorly reported. Contacts with
authors may be needed to find or clarify information, lacking in the reports.

Data extraction and monitoring. Once the list of primary studies is decided,
the data from the primary studies is extracted. A data extraction form is designed
to collect the information needed from the primary study reports. If the quality
assessment data is used for study selection, the extraction form is separated into
two parts, one for quality data, which is filled out during quality assessment, and
one for the study data to be filled out during data extraction.

The data extraction form is designed based on the research questions. For pure
meta-analytical synthesis, the data is a set of numerical values, representing number
of subjects, objects characteristics, treatment effects, confidence intervals, etc. For
less homogeneous sets of studies, more qualitative descriptions of the primary
studies must be included. In addition to the raw data, the name of the reviewer,
date of data extraction and publication details are logged for each primary study.

The data extraction form should be piloted before being applied to the full set of
primary studies. If possible, the data extraction should be performed independently
by two researchers, at least for a sample of the studies, in order to assess the quality
of the extraction procedure.

If a primary study is published in more than one paper, for example, if a
conference paper is extended to a journal version, only one instance should be
counted as a primary study. Mostly, the journal version is preferred, as it is most
complete, but both versions may be used in the data extraction. Supporting technical
reports, or communication with authors may also serve as data sources for the
extraction.

Data synthesis. The most advanced form of data synthesis is meta-analysis. This
refers to statistical methods being applied to analyze the outcome of several indepen-
dent studies. Meta-analysis assumes that the synthesized studies are homogenous,
or the cause of the in-homogeneity being well known [135]. A meta-analysis
compare effect sizes and p values to assess the synthesized outcome. It is primarily
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Fig. 4.1 An example funnel 1/variance j
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applicable to replicated experiments, if any, due to the requirement on homogeneity.
In summary, the studies to be included in a meta-analysis must [135]:

e Be of the same type, for example, formal experiments

e Have the same test hypothesis

* Have the same measures of the treatment and effect constructs
e Report the same explanatory factors

Meta-analysis procedures involve three main steps [135]:

. Decide which studies to include in the meta-analysis.

. Extract the effect size from the primary study report, or estimate if there is no
effect size published.

3. Combine the effect sizes from the primary studies to estimate and test the

combined effect.

N —

In addition to the primary study selection procedures presented above, the meta-
analysis should include an analysis of publication bias. Such methods include the
funnel plot, as illustrated in Fig. 4.1 where observed effect sizes are plotted against a
measure of study size, for example, the inverse of the variance or another dispersion
measure (see Sect. 10.1.2). The data points should scatter around a ‘funnel’ pattern
if the set of primary studies is complete. Gaps in the funnel indicate some studies
not being published or found [135].

The effect size is an indicator, independent of the unit or scale that is used in
each of the primary studies. It depends on the type of study, but could typically
be the difference between the mean values of each treatment. This measure must
be normalized to allow for comparisons with other scales, that is, divided by the
combined standard deviation [135].

The analysis assumes homogeneity between studies, and is then done with a
fixed effects model. The meta-analysis estimates the true effect size by calculating
an average value of the individual study effect sizes, which are averages themselves.
There are tests to identify heterogeneity, such as the Q test and the Likelihood Ratio
test, which should be applied to ensure model conditions are met [135].

For inhomogenous data, there are a random effects model, which allow for
variability due to an unknown factor, which influences the effect sizes for the
primary studies. This model provides estimates both for the sampling error, as the
fixed-effectssmodelyand-for-thevariability;in the inhomogenous sub-populations.
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Fig. 4.2 An example forest
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Less formal methods for data synthesis include descriptive or narrative synthesis.
These methods tabulate data from the primary studies in a manner that brings light
to the research question. As a minimum requirement on tabulated data, Kitchenham
and Charters propose the following items be presented [96]:

e Sample size for each intervention

¢ Estimates of effect size for each intervention with standard errors for each effect

¢ Difference between the mean values for each intervention, and the confidence
interval for the difference

e Units used for measuring the effect

Statistical results may be visualized using forest plots. A forest plot presents the
means and variance of the difference between treatments for each study. An example
forest plot is shown in Fig. 4.2.

Synthesizing inhomogenous studies and mixed-method studies require qualita-
tive approaches. Cruzes and Dyba [39] surveyed secondary studies in software
engineering, which included synthesis of empirical evidence. They identified several
synthesis methods, many from medicine of which seven methods were used in
software engineering. These methods are briefly introduced below. For more detail,
refer to Cruzes and Dyba [39] and related references.

e Thematic analysis is a method that aims at identifying, analyzing and reporting
patterns or themes in the primary studies. At minimum, it organizes and presents
the data in rich detail, and interprets various aspects of the topic under study.

* Narrative synthesis, mentioned above, tells a ‘story’ which originates from the
primary evidence. Raw evidence and interpretations are structured, using for
example tabulation of data, groupings and clustering, or vote-counting as a
descriptive tool. Narrative synthesis may be applied to studies with qualitative
or quantitative data, or combinations thereof.

e The comparative analysis method is aimed at analyzing complex causal connec-
tions. It uses Boolean logic to explain relations between cause and effect in the
primary studies. The analysis lists necessary and sufficient conditions in each of
the primary studies and draws conclusions from presence/absence of independent
variables in each of the studies. This is similar to Noblit and Hare’s [127] Line of
argument synthesis, referred to by Kitchenham and Charters [96].
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e The case survey method is originally defined for case studies, but may apply
to inhomogenous experiments too. It aggregates existing research by applying a
survey instrument of specific questions to each primary study [114], similar to
the data extraction mentioned above. The data from the survey is quantitative,
and hence the aggregation is performed using statistical methods [108].

e Meta-ethnography translates studies into one another, and synthesize the trans-
lations into concepts that go beyond individual studies. Interpretations and
explanations in the primary studies are treated as data in the meta-ethnography
study. This is similar to Noblit and Hare’s [127] Reciprocal translation and
Refutational synthesis, referred to by Kitchenham and Charters [96].

e Meta-analysis is, as mentioned above, based on statistical methods to integrate
quantitative data from several cases.

* Scoping analysis aims at giving an overview of the research in a field, rather
than synthesizing the findings from the research. Scoping are also referred to as
mapping studies, which are further discussed in Sect. 4.4.

Independently of synthesis method, a sensitivity analysis should take place to
analyze whether the results are consistent across different subsets of studies. Subsets
of studies may be, for example, high quality primary studies only, primary studies
of particular type, or primary studies with good reports, presenting all detail needed.

4.3 Reporting the Review

Like any other empirical study, the systematic literature review may be reported
to different audiences. In particular, if the purpose of the review is to influence
practitioners, the format of the report has to be tailored well to its audience.
Kitchenham and Charters [96] list the following forms for dissemination targeting
practitioners:

. Practitioner-oriented journals and magazines

. Press Releases to the popular and specialist press
. Short summary leaflets

. Posters

. Web pages

. Direct communication to affected bodies

AN AW =

For academic audiences, the detailed reporting of procedures for the study is
critical for the ability to assess and evaluate the quality of the systematic literature
review. The reporting ideally includes changes to the study protocol, complete lists
of included and excluded primary studies, data on their classification, as well as
the raw data derived from each of the primary studies. If space constraints do not
allow all details being published, a supporting technical report is recommended to
be published online. A detailed structure for the academic report is proposed by
Kitchenham and Charters [96].
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4.4 Mapping Studies

If the research question for the literature review is broader, or the field of study is less
explored, a mapping study may be launched instead of a systematic literature review.
A mapping study [131], sometimes referred to as scoping study [96], searches a
broader field for any kind of research, in order to get an overview of the state-of-art
or state-of-practice on a topic.

A mapping study follows the same principled process as systematic literature
reviews, but have different criteria for inclusions/exclusions and quality. Due to its
broader scope and varying type of studies, the collected data and the synthesis tend
to be more qualitative than for systematic literature reviews. However, it is important
for the contribution and relevance of a mapping study that the analysis goes beyond
the pure descriptive statistics and relates the trends and observations to real-world
needs.

Kitchenham et al. [106] provided a summary of the key characteristics for
mapping studies compared to systematic literature reviews, which is presented in
Table 4.1.

4.5 Example Reviews

Kitchenham et al. report 53 unique systematic literature reviews in software
engineering being published between 2004 and 2008 [103, 104]. They conclude that
there is a growth of the number of systematic literature reviews being published,
and that the quality of the reviews tend to be increasing too. However, still there is
large variation between those who are aware of and use any systematic guidelines
for its conduct, and those who are not referring to any guidelines.

In one of those systematic literature reviews, Sjgberg et al. [161] survey
the experimental studies conducted in software engineering. They searched nine
journals and three conference proceedings in the decade from 1993 to 2002,
scanning through 5,453 articles to identify 103 experiments, i.e. 1.9% of the papers
presented experiments. The two most frequently research categories are Software
life-cycle/engineering (49%) and Methods/Techniques (32%) classified according
to Glass et al’s scheme [63]. This is due to the relatively large number of experiments
on inspection techniques and object-oriented design techniques, respectively.

Using the same set of primary studies, Dyba et al. [49] reviewed the statistical
power in software engineering experiments, and Hannay et al. [72] reviewed the
use of theory in software engineering. Dieste et al. [43] investigated different search
strategies on the same set of studies, whether titles, abstracts or full texts should be
searched, and also aspects related to which databases to search.

Early attempts at synthesizing five experiment on inspection techniques by
Hayes [74] and Miller [121] indicate that the software engineering experiments
in this field are not sufficiently homogenous to allow for application of statistical
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4.5 Example Reviews
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meta-analysis. They also conclude that raw data must be made available for meta-
analysts, as well as additional non-published information from the primary study
authors.

In a more recent literature review on the effectiveness of pair programming,
Hannay et al. [73] conducted meta-analysis on data from 18 primary studies. They
report separate analyses for three outcome constructs: quality, duration, and effort.
They also visualize the outcomes using forest plots.

4.6 Exercises

4.1. What is the difference between a systematic literature review, and a more
general literature review?

4.2. What search strategies exist for primary studies?

4.3. Why should two researchers conduct some of the same steps in a systematic
literature review?

4.4. What requirements are set on the primary studies to be included in a meta-
analysis?

4.5. Which are the key differences between as systematic literature study and a
mapping study?




Chapter 5
Case Studies

The term “case study” appears every now and then in the title or in the abstracts
of software engineering research papers. However, the presented studies range
from very ambitious and well-organized studies in the field, to small toy examples
that claim to be case studies. The latter should preferably be termed examples or
illustrations. Additionally, there are different taxonomies used to classify research.
The term case study is used in parallel with terms like field study and observational
study, each focusing on a particular aspect of the research methodology. For
example, Lethbridge et al. use field studies as the most general term [111], while
Easterbrook et al. call case studies one of five “classes of research methods” [50].
Zelkowitz and Wallace propose a terminology that is somewhat different from what
is used in other fields, and categorize project monitoring, case study and field
study as observational methods [181]. This plethora of terms causes confusion and
problems when trying to aggregate multiple empirical studies.

The case study methodology is well suited for many kinds of software engi-
neering research, as the objects of study are contemporary phenomena, which are
hard to study in isolation. Case studies do not generate the same results on, for
example, causal relationships as controlled experiments do, but they provide deeper
understanding of the phenomena under study in its real context. As they are different
from analytical and controlled empirical studies, case studies have been criticized
for being of less value, impossible to generalize from, being biased by researchers
etc. The critique may be addressed by applying proper research methodology
practices and accepting that knowledge is not only statistical significance [59, 109].

The objective of this chapter is to provide some guidance for the researcher
conducting case studies. This chapter is based on Runeson and Host [145] and
more details on case studies in software engineering may be obtained from Runeson
et al. [146]. Specifically, checklists for researchers are derived through a systematic
analysis of existing checklists [79, 145], and later evaluated by Ph.D. students as
well as by members of the International Software Engineering Research Network
and updated accordingly.

The chapter does not provide absolute statements for what is considered a ‘good’
case study in software engineering. Rather it focuses on a set of issues that all

C. Wohlin et al., Experimentation.in Software Engineering, 55
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contribute to the quality of the research. The minimum requirement for each issue
must be judged in its context, and will most probably evolve over time.

The chapter is outlined as follows. We first introduce the context of case study
research, discuss the motivations for software engineering case studies and define a
case study research process in Sect.5.1. Section 5.2 discusses the design of a case
study and planning for data collection. Section 5.3 describes the process of data
collection. In Sect. 5.4 issues on data analysis are treated, and reporting is discussed
in Sect. 5.5.

5.1 Case Studies in Its Context

Three commonly used definitions of case study research are provided by Robson
[144], Yin [180] and Benbasat et al. [22] respectively. The three definitions agree
on that case study is an empirical method aimed at investigating contemporary
phenomena in their context. Robson calls it a research strategy and stresses the
use of multiple sources of evidence, Yin denotes it an inquiry and remarks that
the boundary between the phenomenon and its context may be unclear, while
Benbasat et al. make the definitions somewhat more specific, mentioning infor-
mation gathering from few entities (people, groups, organizations), and the lack of
experimental control.

Action research is closely related to case study research with its purpose to
“influence or change some aspect of whatever is the focus of the research” [144].
More strictly, a case study is purely observational while action research is focused
on and involved in the change process. In software process improvement [44, 85]
and technology transfer studies [66], the research method could be characterized
as action research if the researcher actively participates in the improvements.
However, when studying the effects of a change, for example, in pre- and post-event
studies, we classify the methodology as case study. In information system research,
where action research is widely used, there is a discussion on finding the balance
between action and research, see for example Baskerville and Wood-Harper [21] or
Avison et al. [5]. For the research part of action research, these guidelines for case
studies may be used too.

Easterbrook et al. [50] also count ethnographic studies among the major research
methodologies. We prefer to consider ethnographic studies as a specialized type
of case studies with focus on cultural practices [50] or long duration studies with
large amounts of participant-observer data [98]. Zelkowitz and Wallace define
four different “observational methods” in software engineering [181]; project
monitoring, case study, assertion and field study. We prefer to see project monitoring
as a part of a case study and field studies as multiple case studies, while assertion is
not considered an accepted research method.

Robson summarizes his view, which seems functional in software engineering as
well: “Many flexible design studies, although not explicitly labeled as such, can be
usefully viewed as case studies” [144].
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A case study may contain elements of other research methods, for example, a
survey may be conducted within a case study, a literature search often precede a
case study and archival analyses may be a part of its data collection. Ethnographic
methods, like interviews and observations, are mostly used for data collection in
case studies.

Yin adds specifically to the characteristics of a case study that it [180]:

e “Copes with the technically distinctive situation in which there will be many
more variables than data points, and as one result

e Relies on multiple sources of evidence, with data needing to converge in a
triangulating fashion, and as another result

e Benefits from the prior development of theoretical propositions to guide data
collection and analysis.”

Hence, a case study will never provide conclusions with statistical significance.
On the contrary, many different kinds of evidence, figures, statements, documents,
are linked together to support a strong and relevant conclusion.

In summary, the key characteristics of a case study are that [146]:

1. It is of flexible type, coping with the complex and dynamic characteristics of real
world phenomena, like software engineering,

2. Its conclusions are based on a clear chain of evidence, whether qualitative or
quantitative, collected from multiple sources in a planned and consistent manner,
and

3. It adds to existing knowledge by being based on previously established theory, if
such exist, or by building theory.

5.1.1 Why Case Studies in Software Engineering?

The area of software engineering involves development, operation, and maintenance
of software and related artifacts. Research on software engineering is to a large
extent aimed at investigating how development, operation, and maintenance are
conducted by software engineers and other stakeholders under different conditions.
Individuals, groups and organizations, carry out software development, and social
and political questions are of importance for this development. That is, software
engineering is a multidisciplinary discipline involving areas where case studies
are conducted, like psychology, sociology, political science, social work, business,
and community planning (e.g. [180]). This means that many research questions in
software engineering are suitable for case study research.

The definition of case study in Sect. 2.1 focuses on studying phenomena in their
context, especially when the boundary between the phenomenon and its context
is unclear. This is particularly true in software engineering. Experimentation in
software engineering has clearly shown that there are many factors impacting the
outcome of a software engineering activity, for example, when trying to replicate
studies, see Sect.2.6. Case studies offer an approach that does not need a strict



58 5 Case Studies

boundary between the studied object and its environment; perhaps the key to
understanding is in the interaction between the two?

5.1.2 Case Study Research Process

When conducting a case study, there are five major process steps to go through:

1. Case study design: objectives are defined and the case study is planned.

2. Preparation for data collection: procedures and protocols for data collection are
defined.

. Collection of data: execution with data collection on the studied case.

. Analysis of collected data

5. Reporting

R ON]

This process is almost the same for any kind of empirical study; compare, for
example, to the process outlined in Chap. 6 and further elaborated in Chaps. 7-11
for experiments and Kitchenham et al. [98]. However, as case study methodology is
a flexible design strategy, there is a significant amount of iteration over the steps [2].
The data collection and analysis may be conducted incrementally. If insufficient data
is collected for the analysis, more data collection may be planned etc. Eisenhardt
adds two steps between 4 and 5 above in her process for building theories from case
study research [52] (a) shaping hypotheses and (b) enfolding literature, while the
rest except for terminological variations are the same as above.

The five process steps are presented in Sects. 5.2-5.5, where preparation and
collection of data is presented in a joint section, i.e. Sect. 5.3.

5.2 Design and Planning

Case study research is of flexible type but this does not mean that planning is
unnecessary. On the contrary, good planning for a case study is crucial for its
success. There are several issues that need to be planned, such as what methods to
use for data collection, what departments of an organization to visit, what documents
to read, which persons to interview, how often interviews should be conducted, etc.
These plans can be formulated in a case study protocol, see Sect. 5.2.2.

5.2.1 Case Study Planning

A plan for a case study should at least contain the following elements [144]:

e Objective: what to achieve?
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Fig. 5.1 Holistic case study (left) and embedded case study (right)

e Theory: frame of reference

e Research questions: what to know?

e Methods: how to collect data?

o Selection strategy: where to seek data?

The objective of the study may be, for example, exploratory, descriptive,
explanatory, or improving. The objective is naturally more generally formulated
and less precise than in fixed research designs. The objective is initially more like
a focus point that evolves during the study. The research questions state what is
needed to know in order to fulfill the objective of the study. Similar to the objective,
the research questions evolve during the study and are narrowed to specific research
questions during the study iterations [2].

In software engineering, the case may be a software development project, which
is the most straightforward choice. It may alternatively be an individual, a group
of people, a process, a product, a policy, a role in the organization, an event, a
technology, etc. The project, individual, group etc. may also constitute a unit of
analysis within a case. Studies on “toy programs” or similarly are of course excluded
due to its lack of real-life context.

Yin [180] distinguishes between holistic case studies, where the case is studied
as a whole, and embedded case studies where multiple units of analysis are studied
within a case, see Fig.5.1. Whether to define a study consisting of two cases as
holistic or embedded depends on what we define as the context and research goals.
For example if studying two projects in two different companies and in two different
application domains, both using agile practices. On the one hand, the projects may
be considered two units of analysis in an embedded case study if the context is
software companies in general and the research goal is to study agile practices. On
the other hand, if the context is considered being the specific company or application
domain, they have to be seen as two separate holistic cases.

Using theories to develop the research direction is not well established in the
software engineering field, as discussed in Sect.2.7. However, defining the frame
of reference of the study makes the context of the case study research clear, and
helps both those conducting the research and those reviewing the results of it. In
lack of theory, the frame of reference may alternatively be expressed in terms of the
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viewpoint taken in the research and the background of the researchers. Grounded
theory case studies naturally have no specified theory [38].

The principal decisions on methods for data collection are defined at design time
for the case study, although detailed decisions on data collection procedures are
taken later. Lethbridge et al. [111] define three categories of methods: direct (e.g.
interviews), indirect (e.g. tool instrumentation) and independent (e.g. documenta-
tion analysis). These are further elaborated in Sect. 5.3.

In case studies, the case and the units of analysis should be selected intentionally.
This is in contrast to surveys and experiments, where subjects are sampled from
a population to which the results are intended to be generalized. The purpose of
the selection may be to study a case that is expected to be ‘typical’, ‘critical’,
‘revelatory’ or ‘unique’ in some respect [22], and the case is selected accordingly. In
a comparative case study, the units of analysis must be selected to have the variation
in properties that the study intends to compare. However, in practice, many cases
are selected based on availability [22], which is similar for experiments [161].

Case selection is particularly important when replicating case studies. A case
study may be literally replicated, i.e. the case is selected to predict similar results,
or it is theoretically replicated, i.e. the case is selected to predict contrasting results
for predictable reasons [180].

5.2.2 Case Study Protocol

The case study protocol is a container for the design decisions on the case study
as well as field procedures for carrying through the study. The protocol is a
continuously changed document that is updated when the plans for the case study
are changed and serves several purposes:

1. It serves as a guide when conducting the data collection, and in that way prevents
the researcher from missing to collect data that were planned to be collected.

2. The processes of formulating the protocol makes the research concrete in the
planning phase, which may help the researcher to decide what data sources to
use and what questions to ask.

3. Other researchers and relevant people may review it in order to give feedback
on the plans. Feedback on the protocol from other researchers can, for example,
lower the risk of missing relevant data sources, interview questions or roles to
include in the research and to question the relation between research questions
and interview questions.

4. It can serve as a log or diary where all data collection and analysis is recorded
together with change decisions based on the flexible nature of the research.
This can be an important source of information when the case study later on
is reported. In order to keep track of changes during the research project, the
protocol should be kept under some form of version control.
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Table 5.1 Outline of case study protocol according to Brereton et al. [25]

Section Content

Background Previous research, main and additional research questions

Design Single or multiple case, embedded or holistic design; object
of study; propositions derived from research questions

Selection Criteria for case selection

Procedures and roles Field procedures; Roles for research team members

Data collection Identify data, define collection plan and data storage

Analysis Criteria for interpretation, linking between data and
research questions, alternative explanations

Plan validity Tactics to reduce threats to validity

Study limitations Specify remaining validity issues

Reporting Target audience

Schedule Estimates for the major steps

Appendices Any detailed information

Brereton et al. [25] propose an outline of a case study protocol, which is
summarized in Table 5.1. As the proposal shows, the protocol is quite detailed to
support a well-structured research approach.

5.3 Preparation and Collection of Data

There are several different sources of information that can be used in a case study.
It is important to use several data sources in a case study in order to limit the
effects of one interpretation of one single data source. If the same conclusion can
be drawn from several sources of information, i.e. triangulation (briefly described in
the context of experiments in Sect. 6.2), this conclusion is stronger than a conclusion
based on a single source. In a case study, it is also important to take into account
viewpoints of different roles, and to investigate differences for example between
different projects and products. Commonly, conclusions are drawn by analyzing
differences between data sources.

According to Lethbridge et al. [111], data collection techniques can be divided
into three levels:

» First degree: Direct methods means that the researcher is in direct contact with
the subjects and collect data in real time. This is the case with, for example
interviews, focus groups, Delphi surveys [40], and observations with “think aloud
protocols” [129].

e Second degree: Indirect methods where the researcher directly collects raw data
without actually interacting with the subjects during the data collection. Exam-
ples are logging of the usage of software engineering tools, and observations
through video recording.
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o Third degree: Independent analysis of work artifacts where already available and
sometimes compiled data is used. This is for example the case when documents
such as requirements specifications and failure reports from an organization are
analyzed or when data from organizational databases such as time accounting is
analyzed.

First degree methods are mostly more expensive to apply than second or third
degree methods, since they require significant effort both from the researcher and
the subjects. An advantage of first and second degree methods is that the researcher
can to a large extent exactly control what data is collected, how it is collected, in
what form the data is collected, which the context is etc. Third degree methods
are mostly less expensive, but they do not offer the same control to the researcher;
hence the quality of the data is not under control either, neither regarding the
original data quality nor its use for the case study purpose. In many cases the
researcher must, to some extent, base the details of the data collection on what
data is available. For third degree methods, it should also be noticed that the data
has been collected and recorded for another purpose than that of the research study,
contrary to general metrics guidelines [172]. It is not certain that requirements on
data validity and completeness were the same when the data was collected as they
are in the research study.

In Sects.5.3.1-5.3.4, we discuss specific data collection methods, where we
have found interviews, observations, archival data and metrics being applicable to
software engineering case studies [22, 146, 180].

5.3.1 Interviews

In interview-based data collection, the researcher asks a series of questions to a
set of subjects about the areas of interest in the case study. In most cases one
interview is conducted with every single subject, but it is possible to conduct group-
interviews. The dialogue between the researcher and the subject(s) is guided by a
set of interview questions.

The interview questions are based on the research questions (although not
phrased in the same way). Questions can be open, i.e. allowing and inviting a
broad range of answers and issues from the interviewed subject, or closed offering
a limited set of alternative answers.

Interviews can be divided into unstructured, semi-structured and fully structured
interviews [144]. In an unstructured interview, the interview questions are formu-
lated as general concerns and interests from the researcher. In this case the interview
conversation will develop based on the interest of the subject and the researcher. In a
fully structured interview all questions are planned in advance and all questions are
asked in the same order as in the plan. In many ways, a fully structured interview
is similar to a questionnaire-based survey. In a semi-structured interview, questions
are planned, but they are not necessarily asked in the same order as they are listed.
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Table 5.2 Overview of interview types

Unstructured Semi-structured Fully structured
Typical foci How individuals How individuals Researcher seeks to
qualitatively qualitatively and find relations
experience the quantitatively between constructs
phenomenon experience the
phenomenon
Interview questions  Interview guide with ~ Mix of open and closed  Closed questions
areas to focus on questions
Objective Exploratory Descriptive and Descriptive and
explanatory explanatory

The development of the conversation in the interview can decide which order the
different questions are handled, and the researcher can use the list of questions to be
certain that all questions are handled, i.e. more or less as a checklist. Additionally,
semi-structured interviews allow for improvisation and exploration of the studied
objects. Semi-structured interviews are common in case studies. The three types of
interviews are summarized in Table 5.2.

An interview session may be divided into a number of phases. First the researcher
presents the objectives of the interview and the case study, and explains how the data
from the interview will be used. Then a set of introductory questions is asked about
the background etc. of the subject; these questions are relatively simple to answer.
After the introduction, the main interview questions are posed, which take up the
largest part of the interview. If the interview contains personal and maybe sensitive
questions, for example, concerning economy, opinions about colleagues, why things
went wrong, or questions related to the interviewees own competence [80], it is
important that the interviewee is ensured confidentiality and that the interviewee
trusts the interviewer. It is not recommended to start the interview with these
questions or to introduce them before a climate of trust has been obtained. It is
recommended that the researcher summarizes the major findings towards the end of
the interview, in order to get feedback and avoid misunderstandings.

During the interview sessions, it is recommended to record the discussion in a
suitable audio or video format. Even if notes are taken, it is in many cases hard to
record all details, and it is impossible to know what is important to record during the
interview. When the interview has been recorded it needs to be transcribed into text
before it is analyzed. In some cases it may be advantageous to have the transcripts
reviewed by the interview subject.

During the planning phase of an interview study it is decided whom to interview.
Due to the qualitative nature of the case study it is recommended to select subjects
based on differences instead of trying to replicate similarities, as discussed in
Sect. 5.2. This means that it is good to try to involve different roles, personalities,
etc. in the interview. The number of interviewees has to be decided during the study.
One criterion for when sufficient interviews are conducted is ‘saturation’, i.e. when
no new information or viewpoint is gained from new subjects [38].
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Table 5.3 Different approaches to observations

High awareness of Low awareness of
being observed being observed
High degree of interaction Category 1 Category 2
by the researcher
Low degree of interaction Category 3 Category 4

by the researcher

5.3.2 Observations

Observations can be conducted in order to investigate how software engineers
conduct a certain task. This is a first or second degree method according to the
classification above. There are many different approaches for observation. One
approach is to monitor a group of software engineers with a video recorder and later
on analyze the recording. Another alternative is to apply a “think aloud” protocol,
where the researcher are repeatedly asking questions like “What is your strategy?”
and “What are you thinking?” to remind the subjects to think aloud. This can be
combined with recording of audio and keystrokes as proposed, for example, by
Wallace et al. [176]. Observations in meetings are another type, where meeting
attendants interact with each other, and thus generate information about the studied
object. Karahasanovi¢ et al. [93] present an alternative approach where a tool for
sampling is used to obtain data and feedback from the participants.

Approaches for observations can be divided into high or low interaction of
the researcher and high or low awareness of the subjects of being observed, see
Table 5.3.

Observations according to category 1 or category 2 are typically conducted in
action research or classical ethnographic studies where the researcher is part of the
team, and not only seen as a researcher by the other team members. The difference
between category 1 and category 2 is that in category 1 the researcher is seen as an
“observing participant” by the other subjects, while she is more seen as a “normal
participant” in category 2. In category 3 the researcher is seen only as a researcher.
The approaches for observation typically include observations with first degree
data collection techniques, such as a “think aloud” protocol as described above.
In category 4 the subjects are typically observed with a second degree technique
such as video recording (sometimes called video ethnography).

An advantage of observations is that they may provide a deep understanding
of the phenomenon that is studied. Further, it is particularly relevant to use
observations, where it is suspected that there is a deviation between an ‘official’
view of matters and the ‘real’ case [142]. It should however be noted that it produces
a substantial amount of data which makes the analysis time consuming.
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5.3.3 Archival Data

Archival data refers to, for example, meeting minutes, documents from different
development phases, failure data, organizational charts, financial records, and other
previously collected measurements in an organization.

Archival data is a third degree type of data that can be collected in a case study.
For this type of data a configuration management tool is an important source, since
it enables the collection of a number of different documents and different versions
of documents. As for other third degree data sources it is important to keep in mind
that the documents were not originally developed with the intention to provide data
for the research. It is of course hard for the researcher to assess the quality of the
data, although some information can be obtained by investigating the purpose of the
original data collection, and by interviewing relevant people in the organization.

5.3.4 Metrics

The above mentioned data collection techniques are mostly focused on qualitative
data. However, quantitative data is also important in a case study. Collected data can
either be defined or collected for the purpose of the case study, or already available
data can be used in a case study. The first case gives, of course, most flexibility
and the data that is most suitable for the research questions under investigation. The
definition of what data to collect should be based on a goal-oriented measurement
technique, such as the Goal Question Metric method (GQM) [11, 172], which is
presented in Chap. 3.

Examples of already available data are effort data from older projects, sales
figures of products, metrics of product quality in terms of failures etc. This kind
of data may, for example, be available in a metrics database in an organization.
However, note that the researcher can neither control nor assess the quality of the
data, since it was collected for another purpose, and as for other forms of archival
analysis there is a risk of missing important data.

5.4 Data Analysis

5.4.1 Quantitative Data Analysis

Data analysis is conducted differently for quantitative and qualitative data. For
quantitative data, the analysis typically includes analysis of descriptive statistics,
correlation analysis, development of predictive models, and hypothesis testing. All
of these activities are relevant in case study research. Quantitative data analysis,
althoughiprimarilysinranrexperimentabicontext, is further described in Chap. 10.
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Descriptive statistics, such as mean values, standard deviations, histograms and
scatter plots, are used to get an understanding of the data that has been collected.
Correlation analysis and development of predictive models are conducted in order
to describe how a measurement from a later process activity is related to an earlier
process measurement. Hypothesis testing is conducted in order to determine if there
is a significant effect of one or several variables (independent variables) on one or
several other variables (dependent variables).

It should be noticed that methods for quantitative analysis assume a fixed
research design. For example, if a question with a quantitative answer is changed
halfway in a series of interviews, this makes it impossible to interpret the mean
value of the answers. Further, quantitative data sets from single cases tend to be
very small, due to the number of respondents or measurement points, which causes
special concerns in the analysis.

5.4.2 Qualitative Data Analysis

The basic objective of the qualitative analysis is to derive conclusions from the
data, keeping a clear chain of evidence. The chain of evidence means that a reader
should be able to follow the derivation of results and conclusions from the collected
data [180]. This means that sufficient information from each step of the study and
every decision taken by the researcher must be presented.

In addition, analysis of qualitative research is characterized by having analysis
carried out in parallel with the data collection and the need for systematic analysis
techniques. Analysis must be carried out in parallel with the data collection since
the approach is flexible and that new insights are found during the analysis. In order
to investigate these insights, new data must often be collected, and instrumentation
such as interview questionnaires must be updated. The need to be systematic is a
direct result of that the data collection techniques can be constantly updated, while
the same time being required to maintain a chain of evidence.

In order to reduce bias by individual researchers, the analysis benefits from being
conducted by multiple researchers. The preliminary results from each individual
researcher are merged into a common analysis result in a second step. Keeping track
and reporting the cooperation scheme helps increasing the validity of the study.

General techniques for analysis. There are two different parts of data analysis
of qualitative data, hypothesis generating techniques and hypothesis confirmation
techniques [148].

Hypothesis generation is intended to find hypotheses from the data. When using
these kinds of techniques, the researcher should try to be unbiased and open for
whatever hypotheses are to be found in the data. The results of these techniques are
the hypotheses as such. Examples of hypotheses generating techniques are “constant
comparisons” and “cross-case analysis” [148]. Hypothesis confirmation techniques
denote techniques that can be used to confirm that a hypothesis is really true, for
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example, through analysis of more data. Triangulation and replication are examples
of approaches for hypothesis confirmation [148]. Negative case analysis tries to find
alternative explanations that reject the hypotheses. These basic types of techniques
are used iteratively and in combination. First hypotheses are generated and then
they are confirmed. Hypothesis generation may take place within one cycle of a
case study, or with data from one unit of analysis, and hypothesis confirmation may
be done with data from another cycle or unit of analysis [2].

This means that analysis of qualitative data is conducted in a series of steps
(based on Robson [144]). First the data is coded, which means that parts of the
text can be given a code representing a certain theme, area, construct, etc. One code
is usually assigned to many pieces of text, and one piece of text can be assigned
more than one code. Codes can form a hierarchy of codes and sub-codes. The coded
material can be combined with comments and reflections by the researcher (i.e.
‘memos’). When this has been done, the researcher can go through the material to
identify a first set of hypotheses. This can, for example, be phrases that are similar
in different parts of the material, patterns in the data, differences between sub-
groups of subjects, etc. The identified hypotheses can then be used when further
data collection is conducted in the field, i.e. resulting in an iterative approach where
data collection and analysis is conducted in parallel as described above. During
the iterative process a small set of generalizations can be formulated, eventually
resulting in a formalized body of knowledge, which is the final result of the research
attempt. This is, of course, not a simple sequence of steps. Instead, they are executed
iteratively and they affect each other.

One example of a useful technique for analysis is tabulation, where the coded
data is arranged in tables, which makes it possible to get an overview of the data.
The data can, for example be organized in a table where the rows represent codes of
interest and the columns represent interview subjects. However, how to do this must
be decided for every case study.

There are specialized software tools available to support qualitative data analysis,
for example, NVivo! and Atlas.2 However, in some cases standard tools such as
word processors and spreadsheet tools are useful when managing the textual data.

Level of formalism. A structured approach is, as described above, important in
qualitative analysis. However, the analysis can be conducted at different levels of
formalism. Robson [144] mentions the following approaches:

e Immersion approaches: These are the least structured approaches, with very
low level of structure, more reliant on intuition and interpretive skills of the
researcher. These approaches may be hard to combine with requirements on
keeping and communicating a chain of evidence.

e Editing approaches: These approaches include few a priori codes, i.e. codes are
defined based on findings of the researcher during the analysis.

Thttp://www.gsrinternational.com
Zhttp://www.atlasti.com
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o Template approaches: These approaches are more formal and include more a
priori based on research questions.

* Quasi-statistical approaches: These approaches are much formalized and in-
clude, for example, calculation of frequencies of words and phrases.

In our experience editing approaches and template approaches are most suitable
in software engineering case studies. It is hard to present and obtain a clear chain of
evidence in informal immersion approaches. It is also hard to interpret the result of,
for example, frequencies of words in documents and interviews.

5.4.3 Validity

The validity of a study denotes the trustworthiness of the results, and to what extent
the results are true and not biased by the researchers’ subjective point of view. It is,
of course, too late to consider the validity during the analysis. The validity must be
addressed during all previous phases of the case study.

There are different ways to classify aspects of validity and threats to validity in
the literature. Here we chose a classification scheme, which is also used by Yin [180]
for case studies, and similar to what is usually used in controlled experiments
in software engineering as further elaborated in Sect. 8.7. Some researchers have
argued for having a different classification scheme for flexible design studies
(credibility, transferability, dependability and confirmability), while we prefer to
operationalize this scheme for flexible design studies, instead of changing the
terms [144]. This scheme distinguishes between four aspects of the validity, which
can be summarized as follows:

* Construct validity: This aspect of validity reflect to what extent the operational
measures that are studied really represent what the researcher has in mind and
what is investigated according to the research questions. If, for example, the
constructs discussed in the interview questions are not interpreted in the same
way by the researcher and the interviewed persons, there is a threat to construct
validity.

» [Internal validity: This aspect of validity is of concern when causal relations are
examined. When the researcher is investigating whether one factor affects an
investigated factor there is a risk that the investigated factor is also affected by
a third factor. If the researcher is not aware of the third factor and/or does not
know to what extent it affects the investigated factor, there is a threat to internal
validity.

e External validity: This aspect of validity is concerned with to what extent it is
possible to generalize the findings, and to what extent the findings are of interest
to other people outside the investigated case. During analysis of external validity,
the researcher tries to analyze to what extent the findings are of relevance for
other cases. In case studies, there is no population from which a statistically
representativesamplethasibeendrawniHowever, for case studies, the intention is
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to enable analytical generalization where the results are extended to cases which
have common characteristics and hence for which the findings are relevant, i.e.
defining a theory.

* Reliability: This aspect is concerned with to what extent the data and the analysis
are dependent on the specific researchers. Hypothetically, if another researcher
later on conducted the same study, the result should be the same. Threats to this
aspect of validity are, for example, if it is not clear how to code collected data or
if questionnaires or interview questions are unclear. For quantitative analysis, the
counterpart to reliability is conclusion validity, see further Sect. 8.7.

It is, as described above, important to consider the validity of the case study from
the beginning. Examples of ways to improve validity are triangulation; developing
and maintaining a detailed case study protocol; having designs, protocols, etc.
reviewed by peer researchers; have collected data and obtained results reviewed by
case subjects; spending sufficient time with the case, and giving sufficient concern
to analysis of “negative cases”, i.e. looking for theories that contradict your findings.

5.5 Reporting

An empirical study cannot be distinguished from its reporting. The report commu-
nicates the findings of the study, but is also the main source of information for
judging the quality of the study. Reports may have different audiences, such as
peer researchers, policy makers, research sponsors, and industry practitioners [180].
This may lead to the need of writing different reports for difference audiences.
Here, we focus on reports with peer researchers as main audience, i.e. journal or
conference articles and possibly accompanying technical reports [22]. Guidelines
for reporting software engineering case studies to other audiences and in other
formats are provided by Runeson et al. [146]. Benbasat et al. propose that due to the
extensive amount of data generated in case studies, “books or monographs might be
better vehicles to publish case study research” [22].

For case studies, the same high-level structure may be used, see Chap. 11, but
since they are more flexible and mostly based on qualitative data, the low-level
detail is less standardized and more depending on the individual case. Below, we
first discuss the characteristics of a case study report and then a proposed structure.

5.5.1 Characteristics

Robson defines a set of characteristics that a case study report should have [144],
which in summary implies that it should:

e Tell what the study was about.
¢ Communicate a clear sense of the studied case.
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* Provide a “history of the inquiry” so the reader can see what was done, by whom
and how.

¢ Provide basic data in focused form, so the reader can make sure that the
conclusions are reasonable.

 Articulate the researchers conclusions and set them into a context they affect.

In addition, this must take place under the balance between researchers duty and
goal to publish their results, and the companies’ and individuals’ integrity [3].

Reporting the case study objectives and research questions is quite straightfor-
ward. If they are changed substantially over the course of the study, this should be
reported to help understanding the case.

Describing the case might be more sensitive, since this might enable identifica-
tion of the case or its subjects. For example, “a large telecommunications company
in Sweden” is most probably a branch of the Ericsson Corporation. However, the
case may be better characterized by other means than only application domain and
country. Internal characteristics, like size of the studied unit, average age of the
personnel etc. may be more interesting than external characteristics like domain and
turnover. Either the case constitutes a small subunit of a large corporation, and then
it can hardly be identified among the many subunits, or it is a small company and
hence it is hard to identify it among many candidates. Still, care must be taken to
find this balance.

Providing a “history of the inquiry” requires a level of substantially more detail
than pure reporting of used methodologies, for example, “we launched a case
study using semi-structured interviews”. Since the validity of the study is highly
related to what is done, by whom and how, it must be reported about the sequence
of actions and roles acting in the study process. On the other hand, there is no
room for every single detail of the case study conduct, and hence a balance must
be found. Data is collected in abundance in a qualitative study, and the analysis
has as its main focus to reduce and organize data to provide a chain of evidence
for the conclusions. However, to establish trust in the study, the reader needs
relevant snapshots from the data that support the conclusions. These snapshots
may be in the form of, for example, citations (typical or special statements),
pictures, or narratives with anonymized subjects. Further, categories used in the data
classification, leading to certain conclusions may help the reader follow the chain of
evidence.

Finally, the conclusions must be reported and set into a context of implications,
for example, by forming theories. A case study cannot be generalized in the meaning
of being representative of a population, but this is not the only way of achieving and
transferring knowledge. Conclusions can be drawn without statistics, and they may
be interpreted and related to other cases. Communicating research results in terms
of theories is an underdeveloped practice in software engineering [72], as discussed
in Sect. 2.7.
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Table 5.4 Proposed reporting structure for case studies based on Jedlitschka and Pfahl [86] and
adaptations to case study reporting according to Runeson et al. [146]

Section headings

Subsections

Title
Authorship
Structured abstract

Introduction

Related work

Case study design

Results

Conclusions and future work

Acknowledgements
References
Appendices

Problem statement
Research objectives
Context

Earlier studies
Theory

Research questions

Case and subject selection
Data collection procedure(s)
Analysis procedure(s)
Validity procedure(s)

Case and subject descriptions, covering execution, analysis
and interpretation issues

Subsections, which may be structured e.g. according to coding
scheme, each linking observations to conclusions

Evaluation of validity

Summary of findings
Relation to existing evidence
Impact / implications
Limitations

Future work

5.5.2 Structure

For the academic reporting of case studies, the linear-analytic structure (problem,
related work, methods, analysis and conclusions) is the most accepted structure.
The high level structure for reporting experiments in software engineering proposed
by Jedlitschka and Pfahl [86] therefore also fits the purpose of case study reporting.
However, some changes are needed, based on specific characteristics of case studies
and other issues based on an evaluation conducted by Kitchenham et al. [101]. The

resulting structure is

presented in Table 5.4.
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In a case study, the theory may constitute a framework for the analysis; hence,
there are two kinds of related work: (a) earlier studies on the topic and (b) theories
on which the current study is based. The design section corresponds to the case
study protocol, i.e. it reports the planning of the case study including the measures
taken to ensure the validity of the study. Since the case study is of flexible design,
and data collection and analysis are more intertwined, and hence these topics may
be combined into one section (as was done in Sect. 5.3).

Consequently, the contents at the lower level must be adjusted, as proposed in
Table 5.4. Specifically for the combined data section, the coding scheme often
constitutes a natural subsection structure. Alternatively, for a comparative case
study, the data section may be structured according to the compared cases, and for
a longitudinal study, the time scale may constitute the structure of the data section.
This combined results section also includes an evaluation of the validity of the final
results.

In the next chapter, an overview of the process for conducting experiments
is outlined and then each step in the process is presented in more detail in the
subsequent chapters.

5.6 Exercises

5.1. When is case study a feasible research methodology?
5.2. What role has planning in case studies, being a flexible research methodology?
5.3. Which criteria govern the selection of cases for a study?

5.4. List three types of interviews, and explain which type is suitable for different
situations.

5.5. Describe a typical process for qualitative analysis.




Chapter 6
Experiment Process

Experimentation is not simple; we have to prepare, conduct and analyze experiments
properly. One of the main advantages of an experiment is the control of, for example,
subjects, objects and instrumentation. This ensures that we are able to draw more
general conclusions. Other advantages include ability to perform statistical analysis
using hypothesis testing methods and opportunities for replication. To ensure that
we make use of the advantages, we need a process supporting us in our objectives in
doing experiments correctly (the notion of experiments include quasi-experiments,
unless clearly stated otherwise). The basic principles behind an experiment are
illustrated in Fig. 6.1.

The starting point is that we have an idea of a cause and effect relationship, i.e. we
believe that there is a relationship between a cause construct and an effect construct.
We have a theory or are able to formulate a hypothesis. A hypothesis means that we
have an idea of, for example, a relationship, which we are able to state formally in a
hypothesis.

In order to evaluate our beliefs, we may use an experiment. The experiment is
created, for example, to test a theory or hypothesis. In the design of the experiment,
we have a number of treatments (values that the studied variable can take, see
below) over which we have control. The experiment is performed and we are able to
observe the outcome. This means that we test the relationship between the treatment
and the outcome. If the experiment is properly set up, we should be able to draw
conclusions about the relationship between the cause and the effect for which we
stated a hypothesis.

The main objective of an experiment is mostly to evaluate a hypothesis or
relationship, see also Sect.2.4.1. Hypothesis testing normally refers to the former,
and the latter is foremost a matter of building a relational model based on the data
collected. The model may be derived using multivariate statistical methods, for
example, regression techniques and then we evaluate it in an experiment. The focus
in this book is primarily on hypothesis testing. Multivariate statistical methods are
treated by, for example, Kachigan [90,91] and Manly [118].

The experiment process presented in this chapter is formulated to make sure that
the proper actions are taken to ensure a successful experiment. It is unfortunately not
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uncommon that some factor is overlooked before the experiment, and the oversight
prevents us from doing the planned analysis and hence we are unable to draw valid
conclusions. The objective, of having a process, is to provide support in setting up
and conducting an experiment. The activities in an experiment are briefly outlined
in this chapter and treated in more detail in the following chapters, see Chaps. 7-11.

6.1 Variables, Treatments, Objects and Subjects

Before discussing the experiment process, it is necessary to introduce a few
definitions in order to have a vocabulary for experimentation. When conducting
a formal experiment, we want to study the outcome when we vary some of the
input variables to a process. There are two kinds of variables in an experiment,
independent and dependent variables, see Fig. 6.2.

Those variables that we want to study to see the effect of the changes in the
independent variables are called dependent variables (or response variables). Often
there is only one dependent variable in an experiment. All variables in a process that
are manipulated and controlled are called independent variables.

Example. We want to study the effect of a new development method on the
productivity of the personnel. We may have chosen to introduce an object-oriented
design method instead of a function-oriented approach. The dependent variable in
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the experiment is the productivity. Independent variables may be the development
method, the experience of the personnel, tool support, and the environment.

An experiment studies the effect of changing one or more independent variables.
Those variables are called factors. The other independent variables are controlled at
a fixed level during the experiment, or else we cannot say if the factor or another
variable causes the effect. A treatment is one particular value of a factor.

Example. The factor for the example experiment above, is the development method
since we want to study the effect of changing the method. We use two treatments of
the factor: the old and the new development method.

The choice of treatment, and at which levels the other independent variable shall
have, is part of the experiment design, see Fig. 6.3. Experiment design is described
in more detail in Chap. 8.

The treatments are being applied to the combination of objects and subjects.
An object can, for example, be a document that shall be reviewed with different
inspection techniques. The people that apply the treatment are called subjects.' The
characteristics of both the objects and the subjects can be independent variables in
the experiment.

'Sometimes the term participant is used instead of the term subject. The term subject is mainly
used when people are considered with respect to different treatments and with respect to the
analysis and the term participant mainly when it deals with how to engage and motivate people
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Example. The objects in the example experiment are the programs to be developed
and the subjects are the personnel.

An experiment consists of a set of tests (sometimes called trials) where each
test is a combination of treatment, subject and object. It should be observed that
this type of test should not be confused with the use of statistical tests, which is
further discussed in Chap. 10. The number of tests affects the experimental error,
and provides an opportunity to estimate the mean effect of any experimental factor.
The experimental error helps us to know how much confidence we can place in the
results of the experiment.

Example. A test can be that person N (subject) uses the new development method
(treatment) for developing program A (object).

In human-oriented experiments, humans are the subjects, applying different
treatments to objects. This implies several limitations to the control of the exper-
iment. Firstly, humans have different skills and abilities, which in itself may be an
independent variable. Secondly, humans learn over time, which means that if one
subject applies two methods, the order of application of the methods may matter,
and also the same object cannot be used for both occasions. Thirdly, human-oriented
experiments are impacted by all sorts of influences and threats, due to the subject’s
ability to guess what the experimenter expects, their motivation for doing the tasks
etc. Hence it is critical for the outcome of the experiment how subjects are selected
and treated.

Technology-oriented experiments are easier to control, since the technology may
be made deterministic. The independent variable out of control in this type of
experiments may instead be the objects selected for the experiment. One tool or
technique may be well suited for one type of programs, and not for another. Hence
it is critical for the outcome how objects are selected.

6.2 Process

A process provides steps that support an activity, for example, software develop-
ment. Processes are important as they can be used as checklists and guidelines of
what to do and how to do it. To perform an experiment, several steps have to be
taken and they have to be in a certain order. Thus, a process for how to perform
experiments is needed.

The process presented is focused on experimentation, but the same basic steps
must be performed in any empirical study, as illustrated for the case study process
in Sect. 5.1.2. The main difference is the work within a specific activity, for example,
the design of a survey, experiment and case study differ, but they all need to
be designed. Further, as case studies are flexible design studies, there are several
iterations over the process steps, while experiments and surveys, as fixed design
studies, primarily execute the steps once. Thus, the basic process may be used for
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other types of studies than experiments, but it has to be tailored to the specific
type of study being conducted, for example, a survey using e-mail or a case study
of a large software project. The process is as it is presented, however, suited for
both randomized experiments and quasi-experiments. The latter are often used in
software engineering when random samples of, for example, subjects (participants)
are infeasible.

The starting point for an experiment is insight, and the idea that an experiment
would be a possible way of evaluating whatever we are interested in. In other
words, we have to realize that an experiment is appropriate for the question we
are going to investigate. This is by no means always obvious, in particular since
empirical studies are not frequently used within computer science and software
engineering [170, 181]. Some argumentation regarding why computer scientist
should experiment more is provided by Tichy [169]. If we assume that we have
realized, that an experiment is appropriate then it is important to plan the experiment
carefully to avoid unnecessary mistakes, see Sect. 2.9.

The experiment process can be divided into the following main activities. Scop-
ing is the first step, where we scope the experiment in terms of problem, objective
and goals. Planning comes next, where the design of the experiment is determined,
the instrumentation is considered and the threats to the experiment are evaluated.
Operation of the experiment follows from the design. In the operational activity,
measurements are collected which then are analyzed and evaluated in analysis and
interpretation. Finally, the results are presented and packaged in presentation
iviti i in Fig. 6.4 and further elaborated below,
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and then each of the activities is treated in-depth in Chaps.7-11. An overview of
the experiment process including the activities, is presented in Fig. 6.5.

The process is not supposed to be a ‘true’ waterfall model; it is not assumed that
an activity is necessarily finished prior to that the next activity is started. The order
of activities in the process primarily indicates the starting order of the activities. In
other words, the process is partly iterative and it may be necessary to go back and
refine a previous activity before continuing with the experiment. The main exception
is when the operation of the experiment has started, then it is not possible to go back
to the scoping and planning of the experiment. This is not possible since starting the
operation means that the subjects are influenced by the experiment, and if we go
back there is risk that it is impossible to use the same subjects when returning to the
operation phase of the experiment process.

Scoping. The first activity is scoping. The hypothesis has to be stated clearly. It
does not have to be stated formally at this stage, but it has to be clear. Furthermore,
the objective and goals of the experiment must be defined. The goal is formulated
from the problem to be solved. In order to capture the scope, a framework has been
suggested [13]. The framework consists of the following constituents:

* Object of study (what is studied?),

e Purpose (what is the intention?),

e Quality focus (which effect is studied?),
* Perspective (whose view?), and

e Context (where is the study conducted?).

These are further discussed in Chap. 7.

Planning. The planning activity is where the foundation for the experiment is laid.
The context of the experiment is determined in detail. This includes personnel
and the environment, for example, whether the experiment is run in a university
environment with students or in an industrial setting. Moreover, the hypothesis of
the experiment is stated formally, including a null hypothesis and an alternative
hypothesis.

The next step in the planning activity is to determine variables (both indepen-
dent variables (inputs) and the dependent variables (outputs). An important issue
regarding the variables is to determine the values the variables actually can take.
This also includes determining the measurement scale, which puts constraints on
the method that we later can apply for statistical analysis. The subjects of the study
are identified.

Furthermore, the experiment is designed, which includes choosing a suitable
experiment design including, for example, randomization of subjects. An issue
closely related to the design is to prepare for the instrumentation of the experiment.
We must identify and prepare suitable objects, develop guidelines if necessary and
define measurement procedures. These issues are further discussed in Chap. 8.

As a part of the planning, it is important to consider the question of validity of
the results we can expect. Validity can be divided into four major classes: internal,
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external, construct and conclusion validity. Internal validity is concerned with the
validity within the given environment and the reliability of the results. The external
validity is a question of how general the findings are. Many times, we would like to
state that the results from an experiment are valid outside the actual context in which
the experiment was run. The construct validity is a matter of judging if the treatment
ome provides a true picture of the effect
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construct, see Fig.6.1. The conclusion validity is concerned with the relationship
between the treatment and the outcome of the experiment. We have to judge if there
is a relationship between the treatment and the outcome.

The planning is a crucial step in an experiment to ensure that the results from the
experiment become useful. Poor planning may ruin any well-intended study.

Operation. The operation consists in principle of three steps: preparation, execu-
tion and data validation. In the preparation step, we are concerned with preparing
the subjects as well as the material needed, for example, data collection forms. The
participants must be informed about the intention; we must have their consent and
they must be committed. The actual execution is normally not a major problem. The
main concern is to ensure that the experiment is conducted according to the plan
and design of the experiment, which includes data collection. Finally, we must try
to make sure that the actually collected data is correct and provide a valid picture of
the experiment. The operation activity is discussed in Chap. 9.

Analysis and interpretation. The data collected during operation provide the
input to this activity. The data can now be analyzed and interpreted. The first step
in the analysis is to try to understand the data by using descriptive statistics. These
provide a visualization of the data. The descriptive statistics help us to understand
and interpret the data informally.

The next step is to consider whether the data set should be reduced, either by
removing data points or by reducing the number of variables by studying if some of
the variables provide the same information. Specific methods are available for data
reduction.

After having removed data points or reduced the data set, we are able to perform a
hypothesis test, where the actual test is chosen based on measurement scales, values
on the input data and the type of results we are looking for. The statistical tests
together with a more detailed discussion of descriptive statistics and data reduction
techniques can be found in Chap. 10.

One important aspect of this activity is the interpretation. That is, we have to
determine from the analysis whether the hypothesis was possible to reject. This
forms the basis for decision-making and conclusions concerning how to use the
results from the experiment, which includes motivation for further studies, for
example, to conduct an enlarged experiment or a case study.

Presentation and package. The last activity is concerned with presenting and
packaging of the findings. This includes primarily documentation of the results,
which can be made either through a research paper for publication, a lab package
for replication purposes or as part of a company’s experience base. This last activity
is important to make sure that the lessons learned are taken care of in an appropriate
way. Moreover, an experiment will never provide the final answer to a question, and
hence it is important to facilitate replication of the experiment. A comprehensive and
thorough documentation is a prerequisite to achieve this objective. Having said that,
the use of lab packages should done with care since using the same experimental
design and documents may carry over some systematic problems and biases from
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the original experiment, as discussed in Sect.2.6. Independently, we must take
some time after the experiment to document and present it in a proper way. The
presentation of an experiment is further elaborated in Chap. 11.

6.3 Overview

The steps in this experiment process are described in more detail subsequently, and
to support the understanding of the process, an example is presented in Chap. 12.
The objective of the example is to closely follow the defined process in order to
illustrate the use of it. A summarizing overview of the experiment process can be
found in Fig.6.5.

6.4 Exercises

6.1. What is a cause and effect relationship?

6.2. What is a treatment, and why is it sometime necessary to apply treatments in a
random order?

6.3. What are dependent and independent variables respectively?

6.4. What are quasi-experiments? Explain why these are common in software
engineering.

6.5. Which are the main steps in the experiment process, and why is it important to
have distinct steps?




Part 11
Steps in the Experiment Process




Chapter 7
Scoping

Conducting an experiment is a labor-intensive task. In order to utilize the effort
spent, it is important to ensure that the intention with the experiment can be fulfilled
through the experiment. In the scoping phase the foundation of the experiment is
determined, which is illustrated in Fig.7.1. If the foundation is not properly laid,
rework may be required, or even worse, the experiment cannot be used to study
what was intended. The purpose of the scoping phase is to define the goals of an
experiment according to a defined framework. Here we follow the GQM template
for goal definition, originally presented by Basili and Rombach [13].

The scoping of an experiment is discussed in Sect.7.1. An experiment goal
definition example is presented in Sect. 7.2.

7.1 Scope Experiment

The scope of the experiment is set by defining its goals. The purpose of a goal
definition template is to ensure that important aspects of an experiment are defined
before the planning and execution take place. By defining the goal of the experiment
according to this template, the foundation is properly laid. The goal template is [13]:

Analyze <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>
in the context of <Context>.

The object of study is the entity that is studied in the experiment. The object of
study can be products, processes, resources, models, metrics or theories. Examples
are the final product, the development or inspection process, or a reliability growth
model. The purpose defines what the intention of the experiment is. It may be
to evaluate the impact of two different techniques, or to characterize the learning
f focus is the primary effect under study in the

ineering, 85
erlag Berlin Heidelberg 2012



86 7 Scoping

Experiment scoping

Experiment

idea Scope Goal

" | experiment definition

Fig. 7.1 Scoping phase overview

Table 7.1 Experiment context classification

# Objects
One More than one
# Subjects One Single object study Multi-object variation study

per object  More than one ~ Multi-test within object study ~ Blocked subject-object study

experiment. Quality focus may be effectiveness, cost, reliability etc. The perspective
tells the viewpoint from which the experiment results are interpreted. Examples of
perspectives are developer, project manager, customer and researcher. The context is
the ‘environment’ in which the experiment is run. The context briefly defines which
personnel is involved in the experiment (subjects) and which software artifacts
(objects') are used in the experiment. Subjects can be characterized by experience,
team size, workload etc. Objects can be characterized by size, complexity, priority,
application domain etc.

The experiment context can be classified in terms of the number of subjects and
objects involved in the study [10], see Table 7.1.

Single object studies are conducted on a single subject and a single object. Multi-
object variation studies are conducted on a single subject across a set of objects.
Multi-test within object studies examines a single object across a set of subjects.
Blocked subject-object studies examine a set of subjects and a set of objects. All
these experiment types can be run either as an experiment or a quasi-experiment.
In a quasi-experiment there is a lack of randomization of either subjects or objects.
The single-object study is a quasi-experiment if the single subject and object are
not selected by random, but it is an experiment if the subject and object are chosen
by random. The difference between experiments and quasi-experiments is discussed
further by Robson [144].

Examples of the different experiment types are given by the series of experiments
conducted at NASA-SEL [10], aimed at evaluation of Cleanroom principles and
techniques. Cleanroom is a collection of engineering methods and techniques
assembled with the objective to produce high-quality software. A brief introduction
to Cleanroom is provided by Linger [112]. The experiment series consists of four
distinct steps. First, a reading versus unit test experiment was conducted in a blocked

INGte that the ““objects” here are genierally diffétént from the “objects of study” defined above.
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Table 7.2 Example experiment context classification, from Basili [10]

# Objects
One More than one
# Subjects  One 3. Cleanroom project no. 1 at 4. Cleanroom projects no. 2-4
per object SEL [14] at SEL [14]
More than one 2. Cleanroom experiment at 1. Reading versus test [12]

University of Maryland [149] 5. Scenario based reading vs.
checklist [18]

Table 7.3 Goal definition framework

Object of study Purpose Quality focus Perspective Context
Product Characterize Effectiveness Developer Subjects
Process Monitor Cost Modifier Objects
Model Evaluate Reliability Maintainer
Metric Predict Maintainability Project manager
Theory Control Portability Corporate manager
Change Customer
User
Researcher

subject-object study [12], see 1 in Table 7.2. Secondly, a development project
applying Cleanroom techniques was conducted in a student environment [149]. The
experiment was a multi-test within object variation experiment, see 2 in Table 7.2.
Thirdly, a project using Cleanroom was conducted at NASA-SEL [14] as a single
object experiment, see 3 in Table 7.2. Fourthly, three Cleanroom projects were
conducted in the same environment, constituting a multi-object variation study [14],
see 4 in Table 7.2. The next round is a new reading experiment where different
techniques are analyzed [18], see 5 in Table 7.2. This series of experiments is also
discussed by Linkman and Rombach [113].

The example, in Table 7.2, illustrates how experiments (see 1 and 2) can be
conducted as pre-studies prior to case studies (see 3 and 4). This is in line with
the discussion regarding technology transfer and a suitable ordering based on cost
and risk as discussed in Sects. 2.9 and 2.10.

7.2 Example Experiment

The goal definition framework can be filled out with different objects of study,
purposes etc. In Table 7.3, examples of elements are given.

A study definition example is constructed by composing the elements of the
framework and is presented below. The example defines an inspection experiment
where different inspection techniques are evaluated, i.e. perspective-based reading
vs. checklist-based reading. Perspective-based reading was introduced by Basili
etal: [18]; and it has been evaluatediin several experiments including a comparison
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of perspective-based reading vs. an existing method at NASA by Maldonado
etal. [117] and Laitenberger et al. [107] present a comparison between perspective-
based reading and a checklist-based approach. Researchers have also compared
other reading techniques such as a comparison between usage-based reading and
checklist-based reading by Thelin et al. [168].

The objects studied are the Perspective-Based Reading (PBR) technique and a
checklist-based technique. The purpose is to evaluate the reading techniques, in
particular with respect to differences between perspectives in PBR. The quality
focus is the effectiveness and efficiency of the reading techniques. The perspective
is from the researcher’s point of view. The experiment is run using M.Sc. and
Ph.D. students as subjects based on a defined lab package with textual requirements
documents. The study is conducted as a blocked subject-object study, see Table 7.1,
since it involves many subjects and more than one requirements document.

The example is summarized as:

Analyze the PBR and checklist techniques

for the purpose of evaluation

with respect to effectiveness and efficiency

from the point of view of the researcher

in the context of M.Sc. and Ph.D. students reading requirements documents.

This example is used in Chaps. 8—10 to illustrate the progress of the experimental
process. The summary of the experiment forms the goal definition of the experiment.
It is the input to the planning step in the experiment process.

7.3 Exercises

7.1. Why is it important to have set up clear goals with an experiment from the
beginning?

7.2. Write an example of a goal definition for an experiment you would like to
conduct.

7.3. Why is the context in an experiment important?
7.4. How can the context be characterized?

7.5. Explain how a series of studies can be used for technology transfer.
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Chapter 8
Planning

After the scoping of the experiment, the planning takes place. The scoping
determines the foundation for the experiment — why the experiment is conducted —
while the planning prepares for sow the experiment is conducted.

As in all types of engineering activities, the experiment must be planned and
the plans must be followed-up in order to control the experiment. The result of the
experiment can be disturbed, or even destroyed if not planned properly.

The planning phase of an experiment can be divided into seven steps. The input
to the phase is the goal definition for the experiment, see Chap. 7. Based on the goal
definition, the context selection selects the environment in which the experiment
will be executed. Next, the hypothesis formulation and the variable selection of
independent and dependent variables take place. The selection of subjects is carried
out. The experiment design type is chosen based on the hypothesis and variables
selected. Next the instrumentation prepares for the practical implementation of the
experiment. Finally the validity evaluation aims at checking the validity of the
experiment. The planning process is iterated until a complete experiment design
is ready. An overview of the planning phase is given in Fig. 8.1.

8.1 Context Selection

In order to achieve the most general results in an experiment, it should be executed
in large, real software projects, with professional staff. However, conducting an
experiment involves risks, for example that the new method to be examined is not
as good as expected and causes delays. An alternative is to run off-line projects
in parallel with the real projects. This reduces the risks but causes extra costs.
A cheaper alternative is to run projects staffed by students. Such projects are
cheaper, easier to control, but more directed to a certain context than projects staffed
by professionals with more and various experience. Furthermore these projects do
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seldom address real problems, but problems more of toy size due to constraints in
cost and time. This trade-off involves a balance between making studies valid to
a specific context or valid to the general software engineering domain, see further
Sect. 8.7. Given this trade-off, experiments with students as subjects are discussed
in literature, for example, by Host et al. [77].

Hence, the context of the experiment can be characterized according to four
dimensions:

e Off-line vs. on-line

e Student vs. professional
e Toy vs. real problems

* Specific vs. general

A common situation in an experiment is that something existing is compared
to something new, for example an existing inspection method is compared to a
new one [18, 136, 139]. There are two problems related to this type of studies.
Firstly, what is the existing method? It has been applied for some period of
time, but it is rarely well documented and there is no consistent application of
the method. Secondly, learning a new method may influence how the old one is
applied.

This and other issues related to that we are concerned with people have to be
taken into account when planning for an experiment in order to make the results
valid.
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8.2 Hypothesis Formulation

The basis for the statistical analysis of an experiment is hypothesis testing.
A hypothesis is stated formally and the data collected during the course of the
experiment is used to, if possible, reject the hypothesis. If the hypothesis can be
rejected then conclusions can be drawn, based on the hypothesis testing under given
risks.

In the planning phase, the experiment definition is formalized into hypotheses.
Two hypotheses have to be formulated:

Null A null hypothesis, Hy, states that there are no real underlying trends
or patterns in the experiment setting; the only reasons for differences
in our observations are coincidental. This is the hypothesis that the
experimenter wants to reject with as high significance as possible.
An example hypothesis is that a new inspection method finds on
average the same number of faults as the old one, i.e. Hy : Uy, =
N pe» Where (o denotes the average and N is the number of faults
found.

Alternative  An alternative hypothesis, H,, H;, etc., is the hypothesis in favor of
which the null hypothesis is rejected. An example hypothesis is that a
new inspection method on average finds more faults than the old one,

e Hy N pjg < N pew-

There are a number of different statistical tests described in the literature that
can be used to evaluate the outcome of an experiment. They are all based on that
the above hypotheses are formulated before the statistical tests are chosen and
performed. The statistical tests are elaborated in Sect. 10.3.

Testing hypotheses involves different types of risks. Either the test rejects a true
hypothesis or the test does not reject a false hypothesis. These risks are referred to
as type-I-error and type-II-error:

Type-I-error A type-I-error has occurred when a statistical test has indicated a
pattern or relationship even if there actually is no real pattern. That
is, the probability of committing a type-I-error can be expressed as:
P(type-I-error) = P(reject Hy | Hy true).

In the example hypothesis above, the type-I-error is the probability
of rejecting H, even though the two methods on average find the
same number of faults.

Type-II-error A type-II-error has occurred when a statistical test has not indicated
a pattern or relationship even if there actually is a real pattern. That
is, the probability of committing a type-II-error can be expressed as:
P (type-II-error) = P (not reject Hy | Hy false).

In the example hypothesis above, the type-II-error is the probability
of not rejecting Hj even though the two methods on average have
different means.



92 8 Planning

The size of the errors depends on different factors. One example is the ability of
the statistical test to reveal a true pattern in the collected data. This is referred to as
the power of a test:

Power The power of a statistical test is the probability that the test will reveal a
true pattern if Hj is false. An experimenter should choose a test with as
high power as possible. The power can be expressed as:

Power = P(reject Hy | Hy false) = 1 — P(type-II-error)

All these factors have to be considered when planning an experiment.

8.3 Variables Selection

Before any design can start we have to choose the dependent and independent
variables.

The independent variables are those variables that we can control and change
in the experiment. Choosing the right variables is not easy and it usually requires
domain knowledge. The variables should have some effect on the dependent variable
and must be controllable. The choices of the independent and dependent variables
are often done simultaneously or in reverse order. The choice of independent
variables also includes choosing the measurement scales, the range for the variables
and the specific levels at which tests will be made.

The effect of the treatments is measured in the dependent variable(s). Often
there is only one dependent variable and it should therefore be derived directly
from the hypothesis. The variable is mostly not directly measurable and we have to
measure it via an indirect measure instead. This indirect measure must be carefully
validated, because it affects the result of the experiment. The hypothesis can be
refined when we have chosen the dependent variable. The choice of dependent
variable also means that the measurement scale and range of the variables are
determined. A reason to have only one dependent variable is that if there are more
there is a risk that the “fishing and the error rate” threat to conclusion validity may
become too large as described in Sect. 8.8.1.

8.4 Selection of Subjects

The selection of subjects is important when conducting an experiment [144].
The selection is closely connected to the generalization of the results from the
experiment. In order to generalize the results to the desired population, the selection
must be representative for that population. The selection of subjects is also called a
sample from a population.

The sampling of the population can be either a probability or a non-probability
sample: The difference between the two' is that in the probability sampling, the
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probability of selecting each subject is known and in the non-probability sampling
it is unknown. Examples of probability sampling techniques are:

e Simple random sampling: Subjects are selected from a list of the population at
random.

o Systematic sampling: The first subject is selected from the list of the population
at random and then every n:th person is selected from the list.

o Stratified random sampling: The population is divided into a number of groups
or strata with a known distribution between the groups. Random sampling is then
applied within the strata.

Examples of non-probability sampling techniques are:

* Convenience sampling: The nearest and most convenient persons are selected as
subjects.

* Quota sampling: This type of sampling is used to get subjects from various
elements of a population. Convenience sampling is normally used for each
element.

The size of the sample also impacts the results when generalizing. The larger the
sample is, the lower the error becomes when generalizing the results. The sample
size is also closely related to the power of the statistical test, see Sect. 10.3.1. There
are some general principles for choosing the sample size:

e If there is large variability in the population, a larger sample size is needed.

e The analysis of the data may influence the choice of the sample size. It is
therefore needed to consider how the data shall be analyzed already at the design
stage of the experiment.

8.5 Experiment Design

To draw meaningful conclusions from an experiment, we apply statistical analysis
methods on the collected data to interpret the results, as further described in
Chap. 10. To get the most out of the experiment, it must be carefully planned and
designed. Which statistical analyses we can apply depend on the chosen design, and
the used measurement scales, see Chap. 3. Therefore design and interpretation are
closely related.

8.5.1 Choice of Experiment Design

An experiment consists of a series of tests of the treatments. To get the most out of
the experiment, the series of tests must be carefully planned and designed. A design
of an experiment describes how the tests are organized and run. More formally,
we can define an experiment as a set of tests.
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As described above, the design and the statistical analysis are closely related.
The choice of design affects the analysis and vice versa. To design the experiment,
we have to look at the hypothesis to see which statistical analysis we have to
perform to reject the null hypothesis. Based on the statistical assumptions, for
example, the measurement scales, and on which objects and subjects we are able
to use, we make the experiment design. During the design we determine how
many tests the experiment shall have to make sure that the effect of the treatment
is visible. A proper design also forms the basis to allow for replication. In the
following two sections, general design principles and some standard design types
are presented.

8.5.2 General Design Principles

When designing an experiment, many aspects must be considered. The general
design principles are randomization, blocking and balancing, and most experiment
designs use some combination of these. To illustrate the general design principles,
we use an example.

Example. A company will conduct an experiment to investigate the effect on the
reliability of a program when using object-oriented design instead of the standard
company design principle. The experiment will use program A as the experiment
object. The experiment design is of type “multi-test within object study”, see
Chap. 7.

Randomization. One of the most important design principles is randomization.
All statistical methods used for analyzing the data require that the observations
be from independent random variables. To meet this requirement, randomization
is used. The randomization applies on the allocation of the objects, subjects and
in which order the tests are performed. Randomization is used to average out the
effect of a factor that may otherwise be present. Randomization is also used to select
subjects that is representative of the population of interest.

Example. The selection of the persons (subjects) will be representative of the
designers in the company, by random selection of the available designers. The
assignment to each treatment (object-oriented design or the standard company
design principle) is selected randomly.

Blocking. Sometimes we have a factor that probably has an effect on the response,
but we are not interested in that effect. If the effect of the factor is known and
controllable, we can use a design technique called blocking. Blocking is used
to systematically eliminate the undesired effect in the comparison among the
treatments. Within one block, the undesired effect is the same and we can study the
effect of the treatments on that block. Blocking is used to eliminate the undesired
effect in the study and therefore the effects between the blocks are not studied. This
technique increases the precision of the experiment.
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Example. The persons (subjects) used, for this experiment, have different
experience. Some of them have used object-oriented design before and some have
not. To minimize the effect of the experience, the persons are grouped into two
groups (blocks), one with experience of object-oriented design and one without.

Balancing. If we assign the treatments so that each treatment has equal number
of subjects, we have a balanced design. Balancing is desirable because it both
simplifies and strengthens the statistical analysis of the data, but it is not necessary.

Example. The experiment uses a balanced design, which means that there is the
same number of persons in each group (block).

8.5.3 Standard Design Types

In this section some of the most frequently used experiment designs are presented.
The designs range from simple experiments with a single factor to more complex
experiments with many factors. Experiment design is discussed in depth by,
for example, Montgomery [125] and is elaborated in more depth for software
engineering by Juristo and Moreno [88]. For most of the designs, an example
hypothesis is formulated and statistical analysis methods are suggested for each
design. The design types presented in this section are suitable for experiments
with:

¢ One factor with two treatments.

¢ One factor with more than two treatments.

¢ Two factors with two treatments.

¢ More than two factors each with two treatments.

One factor with two treatments. With these experiments, we want to compare the
two treatments against each other. The most common is to compare the means of
the dependent variable for each treatment. The following notations are used:

1 The mean of the dependent variable for treatment i.
vij  The j:th measure of the dependent variable for treatment 7.

Example of an experiment: The aim is to investigate if a new design method
produces software with higher quality than the previously used design method. The
factor in this experiment is the design method and the treatments are the new and
the old design method. The dependent variable can be the number of faults found in
development.

Completely randomized design. This is a basic experiment design for comparing
two treatment means. The design setup uses the same objects for both treatments
and assigns the subjects randomly to each treatment, see Table 8.1. Each subject
uses only one treatment on one object. If we have the same number of subjects per
treatment the design is balanced.
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Table 8.1 Example of

.. . Subjects Treatment 1 Treatment 2
assigning subjects to the
treatments for a randomized 1 X
design 2 X
3 X
4 X
5 X
6 X
Tal?le ‘8'2 Example of Subjects Treatment 1 Treatment 2
assigning the treatments for a
paired design 1 2 1
2 1 2
3 2 1
4 2 1
5 1 2
6 1 2
Example of hypothesis:
Ho:pr = 2

Hy:py # pa, 1 < o Or (L > o
Examples of analysis: t-test, Mann-Whitney, see Sect. 10.3.

Paired comparison design. We can sometimes improve the precision of the exper-
iment by making comparisons within matched pairs of experiment material. In this
design, each subject uses both treatments on the same object. This is sometimes
referred to as a crossover design. This type of design has some challenges, which is
further discussed in relation to the example in Sect. 10.4. To minimize the effect
of the order, in which the subjects apply the treatments, the order is assigned
randomly to each subject, see Table 8.2. This design cannot be applied in every
case of comparison as the subject can gain too much information from the first
treatment to perform the experiment with the second treatment. The comparison for
the experiment can be to see if the difference between the paired measures is zero.
If we have the same number of subjects starting with the first treatment as with the
second, we have a balanced design.

Example of hypothesis:
d; = yij — y2;j and 4 is the mean of the difference.
Hy : Md = 0

Hy:pa #0, pa <0orpug >0
Examples of analysis: Paired t-test, Sign test, Wilcoxon, see Sect. 10.3.

One factor with more than two treatments. As with experiments with only two
treatments, we want to compare the treatments with each other. The comparison is
often performed on the treatment means.

Example of an experiment: The experiment investigates the quality of the software
when using different programming languages. The factor in the experiment is the
can be C, C++, and Java.
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Table 8.3 Example of
assigning the treatments to
the subjects

Subjects  Treatment 1 ~ Treatment 2  Treatment 3
X

X

oL AW =
b

Table 8.4 Example of
assigning the treatments to
the subjects

Subjects  Treatment 1  Treatment 2  Treatment 3

AN B W N =
— NN W=
DN = W= W
W o= W o= NN

Completely randomized design. A completely randomized design requires that the
experiment is performed in random order so that the treatments are used in an
environment as uniform as possible. The design uses one object to all treatments
and the subjects are assigned randomly to the treatments, see Table 8.3.

Example of hypothesis, where a is the number of subjects:

Hy:pi=pa=p3=...= g

Hi : pj # pj for at least one pair (i, j)

Examples of analysis: ANOVA (ANalysis Of VAriance) and Kruskal-Wallis, see
Sect. 10.3.

Randomized complete block design. If the variability between the subjects is large,
we can minimize this effect on the result by using a randomized complete block
design. With this design, each subject uses all treatments and the subjects form a
more homogeneous experiment unit, i.e. we block the experiment on the subjects,
see Table 8.4. The blocks represent a restriction on randomization. The experiment
design uses one object to all treatments and the order in which the subjects use the
treatments are assigned randomly. The paired comparison design above is a special
case of this design with only two treatments. The randomized complete block design
is one of the most used experiment designs.

Example of hypothesis:

Hy:pi=pa=p3s=...= g

Hi : pj # pj for at least one pair (i, j)

Examples of analysis: ANOVA (ANalysis Of VAriance) and Kruskal-Wallis, see
Sect. 10.3.

Two factors. The experiment gets more complex when we increase from one factor
to two. The single hypothesis for the experiments with one factor will split into three
hypotheses: one hypothesis for the effect from one of the factors, one for the other
f o factors. We use the following notations:
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Table 8.5 Example of a 2*2

factorial design Factor A

Treatment A1~ Treatment A2

Factor B Treatment B1 Subject 4, 6 Subject 1,7
Treatment B2~ Subject 2, 3 Subject 5, 8

T The effect of treatment i on factor A.
Bj The effect of treatment j on factor B.
(tB)ij  The effect of the interaction between 7; and ;.

2*2 factorial design. This design has two factors, each with two treatments.
In this experiment design, we randomly assign subjects to each combination of the
treatments, see Table 8.5.

Example of an experiment: The experiment investigates the understandability of
the design document when using structured or object-oriented design based on one
‘good’ and one ‘bad’ requirements documents. The first factor, A, is the design
method and the second factor, B, is the requirements document. The experiment
design is a 2*2 factorial design as both factors have two treatments and every
combination of the treatments are possible.

Example of hypothesis:

H() T =Ty = 0

H, :atleastone ; # 0

Hy:B1=p=0

H; :atleastone 8; # 0

Hy : (zB)ij = Oforalli, j

H; : atleastone (t8);; # 0

Example of analysis: ANOVA (ANalysis Of VAriance), see Sect. 10.3.

Two-stage nested design. If one of the factors, for example B, in the experiment is
similar but not identical for different treatments of the other factor, for example A,
we have a design that is called nested or hierarchical design. Factor B is said to be
nested under factor A. The two-stage nested design has two factors, each with two
or more treatments. The experiment design and analysis are the same as for the 2*2
factorial design, see Table 8.6.

Example of an experiment: The experiment investigates the test efficiency of unit
testing of a program when using function or object-oriented programming and
if the programs are ‘defect-prone’ or ‘non-defect-prone’. The first factor, A, is the
programming language and the second factor, B, is the defect-proneness of the
program. The experiment design has to be nested, as a ‘defect-prone/nondefect-
prone’ functional program is not the same as a ‘defect-prone/non-defectprone’
object-oriented program.

More than two factors. In many cases, the experiment has to consider more than
two factors. The effect in the dependent variable can therefore be dependent not
on the interactions between the factors.
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Table 8.6 Example of a two-stage nested design where B is nested
under A

Factor A

Treatment Al Treatment A2

Factor B Factor B

Treatment BI”  Treatment B2’  Treatment B1”  Treatment B2”
Subject 1, 3 Subject 6, 2 Subject 7, 8 Subject 5, 4

Table 8.7 Example of a 23 factorial design

Factor A Factor B Factor C Subjects
Al Bl Cl 2,3

A2 Bl Cl 1,13
Al B2 Cl 5,6

A2 B2 Cl 10, 16
Al Bl Cc2 7,15
A2 Bl Cc2 8,11
Al B2 Cc2 4,9

A2 B2 Cc2 12, 14

These interactions can be between two or more factors. This type of designs is
called factorial designs. This section gives an introduction to designs where each
factor has only two treatments each. Designs where the factors have more than two
treatments are presented by Montgomery [125].

2K factorial design. The 2*2 factorial design is a special case of the 2% factorial
design, i.e. when k =2. The 2* factorial design has k factors where each factor
has two treatments. This means that there are 2¢ different combinations of the
treatments. To evaluate the effects of the k factors, all combinations have to
be tested. The subjects are randomly assigned to the different combinations.
An example of a 23 factorial design is shown in Table 8.7.

The hypotheses and the analyses for this type of design are of the same type as
for the 2*2 factorial design. More details about the 2% factorial design care presented
by Montgomery [125].

2K fractional factorial design. When the number of factor grows in a 2* factorial
design, the number of factor combinations grows rapidly, for example, there are
8 combinations for a 2* factorial design and 16 for a 2* factorial design. Often, it can
be assumed that the effects of certain high-order interactions are negligible and that
the main effects and the low-order interaction effects can be obtained by running a
fraction of the complete factorial experiment. This type of design is therefore called
fractional factorial design.
The fractional factorial design is based on three ideas:

* The sparsity of effect principle: It is likely that the system is primarily driven by
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Table 8.8 Example of an one-half fraction of the 2°
factorial design

Factor A Factor B Factor C Subjects
Al Bl C2 2,3
A2 Bl Cl 1,8
Al B2 Cl 5,6
A2 B2 Cc2 4,7

Table 8.9 Example of an one-quarter fraction of the 2° factorial design
Factor A Factor B Factor C Factor D Factor E Subjects

Al B1 Cl1 D2 E2 3,16
A2 B1 Cl1 D1 El 7,9
Al B2 Cl1 D1 E2 1,4
A2 B2 Cl1 D2 El 8,10
Al B1 C2 D2 El 5,12
A2 B1 C2 D1 E2 2,6
Al B2 C2 D1 El 11,15
A2 B2 C2 D2 E2 13,14

o The projection property: A stronger design can be obtained by taking a subset of
significant factors from the fractional factorial design.

o Sequential experimentation: A stronger design can be obtained by combining
sequential runs of two or more fractional factorial designs.

The major use of these fractional factorial designs is in screening experiments,
where the purpose of the experiment is to identify the factors that have large effects
on the system. Examples of fractional factorial designs are:

One-half fractional factorial design of the 2* factorial design: Half of the
combinations of a full 2¢ factorial design is chosen. The combinations are selected
so that if one factor is removed the remaining design is a full 2~! factorial design,
see Table 8.8. The subjects are randomly assigned to the selected combinations.
There are two alternative fractions in this design and if both fractions are used in
sequence, the resulting design is a full 2% factorial design.

One-quarter fractional factorial design of the 2* factorial design: One quarter
of the combinations of the full 2% factorial design is chosen. The combinations
are selected so that if two factors are removed the remaining design is a full 2¢=2
factorial design, see Table 8.9. There are however dependencies between the factors
in the one-quarter design due to that it is not a full factorial design.

For example, in Table 8.9, factor D is dependent on a combination of factor A
and B. It can, for example, be seen that for all combinations of Al and B1, we have
D2, and so forth. In a similar way, factor E is dependent on a combination of factor
A and C. Thus, if factor C and E (or B and D) are removed, the resulting design
becomes two replications of a 237! fractional factorial design and not a 2* factorial
designy The'latterdesigniistobtainediif Diand E are removed. The two replications
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can be identified in Table 8.9 by noticing that the first four rows are equivalent to
the four last rows in the table, when C and E are removed, and hence it becomes two
replications of a 2% factorial design.

The subjects are randomly assigned to the selected combinations. There are four
alternative fractions in this design and if all four fractions are used in sequence,
the resulting design is a full 2% factorial design. If two of the fractions are used in
sequence a one-half fractional design is achieved.

More details on the fractional factorial designs are presented by Montgomery
[125].

In summary, the choice of the correct experimental design is crucial, since
a poor design will undoubtedly affect the possibility of being able to draw the
correct conclusions after the study. Furthermore, the design puts constraints on
the statistical methods that can be applied. Finally, it should be stressed that it is
important to try to use a simple design if possible and try to make the best possible
use of the available subjects.

8.6 Instrumentation

The instruments for an experiment are of three types, namely objects, guidelines
and measurement instruments. In the planning of an experiment, the instruments
are chosen. Before execution, the instruments are developed for the specific
experiment.

Experiment objects may be, for example, specification or code documents.
When planning for an experiment, it is important to choose objects that are
appropriate. For example, in an inspection experiment, the number of faults must
be known in the inspection objects. This can be achieved by seeding faults or by
using a document with a known number of faults. Using a true early version of a
document in which the faults are identified can do the latter.

Guidelines are needed to guide the participants in the experiment. Guidelines
include, for example, process descriptions and checklists. If different methods are
compared in the experiment, guidelines for the methods have to be prepared for
the experiment. In addition to the guidelines, the participants also need training in
the methods to be used.

Measurements in an experiment are conducted via data collection. In human-
intensive experiments, data is generally collected via manual forms or in interviews.
The planning task to be performed is to prepare forms and interview questions and
to validate the forms and questions with some people having similar background
and skills as the experiment participants. An example of a form used to collect
information about the experience of subjects is shown among the exercises, see
Table A.1 in Appendix A.

The overall goal of the instrumentation is to provide means for performing
the experiment and to monitor it, without affecting the control of the experiment.
Theresultsof theexperimentshallbe the'same independently of how the experiment
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is instrumented. If the instrumentation affects the outcome of the experiment,
the results are invalid.

The validity of an experiment is elaborated in Sect.8.7 and more about the
preparation of instruments can be found in Sects. 9.1.2 and 9.2.2.

8.7 Validity Evaluation

A fundamental question concerning results from an experiment is how valid the
results are. It is important to consider the question of validity already in the planning
phase in order to plan for adequate validity of the experiment results. Adequate
validity refers to that the results should be valid for the population of interest. First of
all, the results should be valid for the population from which the sample is drawn.
Secondly, it may be of interest to generalize the results to a broader population.
The results are said to have adequate validity if they are valid for the population to
which we would like to generalize.

Adequate validity does not necessarily imply most general validity. An experi-
ment conducted within an organization may be designed to answer some questions
for that organization exclusively, and it is sufficient if the results are valid within
that specific organization. On the other hand, if more general conclusions shall be
drawn, the validity must cover a more general scope as well.

There are different classification schemes for different types of threats to the
validity of an experiment. Campbell and Stanley define two types, threats to
internal and external validity [32]. Cook and Campbell extend the list to four
types of threats to the validity of experimental results. The four threats are
conclusion, internal, construct and external validity [37]. The former categorization
is sometimes referred to in the literature, but the latter is preferable since it is
easily mapped to the different steps involved when conducting an experiment, see
Fig.8.2.

Each of the four categories presented by Cook and Campbell [37] is related to a
methodological question in experimentation. The basic principles of an experiment
are presented in Fig. 8.2.

On the top, we have the theory area, and on the bottom, the observation area.
We want to draw conclusions about the theory defined in the hypotheses, based on
our observations. In drawing conclusions we have four steps, in each of which there
is one type of threat to the validity of the results.

1. Conclusion validity. This validity is concerned with the relationship between
the treatment and the outcome. We want to make sure that there is a statistical
relationship, i.e. with a given significance.

2. Internal validity. If a relationship is observed between the treatment and the
outcome, we must make sure that it is a causal relationship, and that it is not
a result of a factor of which we have no control or have not measured. In other
words.that.the treatment.causes.the.outcome (the effect).
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Experiment objective
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cause-effect

Cause construct Effect
construct

Theory
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treatment-outcome

i construct
Treatment _> Output

Independent variable Dependent variable

Experiment operation

Fig. 8.2 Experiment principles (Adapted from Trochim [171])

3. Construct validity. This validity is concerned with the relation between theory
and observation. If the relationship between cause and effect is causal, we must
ensure two things: (1) that the treatment reflects the construct of the cause well
(see left part of Fig.8.2) and (2) that the outcome reflects the construct of the
effect well (see right part of Fig. 8.2).

4. External validity. The external validity is concerned with generalization. If there
is a causal relationship between the construct of the cause, and the effect, can
the result of the study be generalized outside the scope of our study? Is there a
relation between the treatment and the outcome?

Conclusion validity is sometimes referred to as statistical conclusion valid-
ity [37], and has its counterpart in reliability for qualitative analysis, see Sect. 5.4.3.
Threats to conclusion validity are concerned with issues that affect the ability to
draw the correct conclusion about relations between the treatment and the outcome
of an experiment. These issues include, for example, choice of statistical tests,
choice of sample sizes, care taken in the implementation and measurement of an
experiment.

Threats to internal validity concern issues that may indicate a causal relationship,
although there is none. Factors that impact on the internal validity are how the
subjects are selected and divided into different classes, how the subjects are
treated and compensated during the experiment, if special events occur during
the experiment etc. All these factors can make the experiment show a behavior that
is not due to the treatment but to the disturbing factor.

Threats to construct validity refer to the extent to which the experiment setting
3 reflectssthesconstructzundersstudy. For example, the number of courses
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taken at the university in computer science may be a poor measure of the subject’s
experience in a programming language, i.e. has poor construct validity. The number
of years of practical use may be a better measure, i.e. has better construct validity.

Threats to external validity concern the ability to generalize experiment results
outside the experiment setting. External validity is affected by the experiment design
chosen, but also by the objects in the experiment and the subjects chosen. There are
three main risks: having wrong participants as subjects, conducting the experiment
in the wrong environment and performing it with a timing that affects the results.

A detailed list of threats to the validity is presented in Sect. 8.8. This list can
be used as a checklist for an experiment design. In the validity evaluation, each of
the items is checked to see if there are any threats. If there are any, they have to be
addressed or accepted, since sometimes some threat to validity has to be accepted.
It may even be impossible to carry out an experiment without certain threats and
hence they have to be accepted and then addressed when interpreting the results.
The priority between different types of threats is further discussed in Sect. 8.9.

8.8 Detailed Description of Validity Threats

Below, a list of threats to the validity of experiments is discussed based on Cook
and Campbell [37]. All threats are not applicable to all experiments, but this list can
be seen as a checklist. The threats are summarized in Table 8.10 and the alternative
and limited classification scheme [32] is summarized in Table 8.11.

8.8.1 Conclusion Validity

Threats to the conclusion validity are concerned with issues that affect the ability to
draw the correct conclusion about relations between the treatment and the outcome
of an experiment.

Low statistical power. The power of a statistical test is the ability of the test to reveal
a true pattern in the data. If the power is low, there is a high risk that an erroneous
conclusion is drawn, see further Sect. 8.2 or more specifically we are unable to reject
an erroneous hypothesis.

Violated assumptions of statistical tests. Certain tests have assumptions on, for
example, normally distributed and independent samples. Violating the assumptions
may lead to wrong conclusions. Some statistical tests are more robust to violated
assumptions than others are, see Chap. 10.

Fishing and the error rate. This threat contains two separate parts. Searching or
‘fishing’ for a specific result is a threat, since the analyses are no longer independent
and_the researchers may_ influence the result by looking for a specific outcome.
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Table 8.10 Threats to validity according to Cook and Campbell [37]

Conclusion validity

Internal validity

Low statistical power

Violated assumption of statistical tests
Fishing and the error rate

Reliability of measures

Reliability of treatment implementation
Random irrelevancies in experimental setting
Random heterogeneity of subjects

History

Maturation

Testing

Instrumentation

Statistical regression

Selection

Mortality

Ambiguity about direction of causal
influence

Interactions with selection

Diffusion of imitation of treatments

Compensatory equalization of treatments

Compensatory rivalry

Resentful demoralization

Construct validity

External validity

Inadequate preoperational explication of constructs
Mono-operation bias

Mono-method bias

Confounding constructs and levels of constructs
Interaction of different treatments

Interaction of testing and treatment

Restricted generalizability across constructs
Hypothesis guessing

Evaluation apprehension

Experimenter expectancies

Interaction of selection and treatment
Interaction of setting and treatment
Interaction of history and treatment

Table 8.11 Threats to validity according to Campbell and Stanley [32]

Internal validity

External validity

History

Maturation

Testing
Instrumentation
Statistical regression
Selection

Interaction of selection and treatment
Interaction of history and treatment
Interaction of setting and treatment
Interaction of different treatments

The error rate is concerned with the actual significance level. For example,
conducting three investigations with a significance level of 0.05 means that the
total significance level is 1 — (1 — 0.05)3, which equals 0.14. The error rate
(i.e. significance level) should thus be adjusted when conducting multiple analyses.

Reliability of measures. The validity of an experiment is highly dependent on the
reliability of the measures. This in turn may depend on many different factors, like
poor question wording, bad instrumentation or bad instrument layout. The basic
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principle is that when you measure a phenomenon twice, the outcome shall be the
same. For example, lines of code are more reliable than function points since it
does not involve human judgement. In other words, objective measures, that can be
repeated with the same outcome, are more reliable than subjective measures, see
also Chap. 3.

Reliability of treatment implementation. The implementation of the treatment
means the application of treatments to subjects. There is a risk that the implemen-
tation is not similar between different persons applying the treatment or between
different occasions. The implementation should hence be as standard as possible
over different subjects and occasions.

Random irrelevancies in experimental setting. Elements outside the experimental
setting may disturb the results, such as noise outside the room or a sudden interrupt
in the experiment.

Random heterogeneity of subjects. There is always heterogeneity in a study group.
If the group is very heterogeneous, there is a risk that the variation due to individual
differences is larger than due to the treatment. Choosing more homogeneous groups
will on the other hand affect the external validity, see below. For example, an
experiment with undergraduate students reduces the heterogeneity, since they have
more similar knowledge and background, but also reduces the external validity
of the experiment, since the subjects are not selected from a general enough
population.

8.8.2 Internal Validity

Threats to internal validity are influences that can affect the independent variable
with respect to causality, without the researcher’s knowledge. Thus they threat
the conclusion about a possible causal relationship between treatment and outcome.
The internal validity threats are sometimes sorted into three categories, single group
threats, multiple group threats and social threats.

Single group threats. These threats apply to experiments with single groups.
We have no control group to which we do not apply the treatment. Hence, there
are problems in determining if the treatment or another factor caused the observed
effect.

History. In an experiment, different treatments may be applied to the same object at
different times. Then there is a risk that the history affects the experimental results,
since the circumstances are not the same on both occasions. For example if one of
the experiment occasions is on the first day after a holiday or on a day when a very
rare event takes place, and the other occasion is on a normal day.

Maturation. This is the effect of that the subjects react differently as time passes.
Examples,are when the subjects,are affected negatively (tired or bored) during the
experiment, or positively (learning) during the course of the experiment.
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Testing. If the test is repeated, the subjects may respond differently at different
times since they know how the test is conducted. If there is a need for familiarization
to the tests, it is important that the results of the test are not fed back to the subject,
in order not to support unintended learning.

Instrumentation. This is the effect caused by the artifacts used for experiment
execution, such as data collection forms, document to be inspected in an inspection
experiment etc. If these are badly designed, the experiment is affected negatively.

Statistical regression. This is a threat when the subjects are classified into experi-
mental groups based on a previous experiment or case study, for example top-ten
or bottom-ten. In this case there might be an increase or improvement, even if
no treatment is applied at all. For example if the bottom-ten in an experiment are
selected as subjects based on a previous experiment, all of them will probably not
be among the bottom-ten in the new experiment due to pure random variation.
The bottom-ten cannot be worse than remain among the bottom-ten, and hence the
only possible change is to the better, relatively the larger population from which
they are selected.

Selection. This is the effect of natural variation in human performance. Depending
on how the subjects are selected from a larger group, the selection effects can
vary. Furthermore, the effect of letting volunteers take part in an experiment may
influence the results. Volunteers are generally more motivated and suited for a new
task than the whole population. Hence the selected group is not representative for
the whole population.

Mortality. This effect is due to the different kinds of persons who drop out from
the experiment. It is important to characterize the dropouts in order to check if they
are representative of the total sample. If subjects of a specific category drop out,
for example, all the senior reviewers in an inspection experiment, the validity of the
experiment is highly affected.

Ambiguity about direction of causal influence. This is the question of whether A
causes B, B causes A or even X causes A and B. An example is if a correlation
between program complexity and error rate is observed. The question is if high
program complexity causes high error rate, or vice versa, or if high complexity of
the problem to be solved causes both.

Most of the threats to internal validity can be addressed through the experiment
design. For example, by introducing a control group many of the internal threats can
be controlled. On the other hand, multiple group threats are introduced instead.

Multiple groups threats. In a multiple groups experiment, different groups are
studied. The threat to such studies is that the control group and the selected
experiment groups may be affected differently by the single group threats as defined
above. Thus there are interactions with the selection.

Interactions with selection. The interactions with selection are due to different
behavior_in_different_groups. For_example, the selection-maturation interaction
means that different groups mature at different speed, for example if two groups
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apply one new method each. If one group learns its new method faster than the other,
due to its learning ability, does, the selected groups mature differently. Selection-
history means that different groups are affected by history differently, etc.

Social threats to internal validity. These threats are applicable to single group
and multiple group experiments. Examples are given below from an inspection
experiment where a new method (perspective-based reading) is compared to an old
one (checklist-based reading).

Diffusion or imitation of treatments. This effect occurs when a control group learns
about the treatment from the group in the experiment study or they try to imitate the
behavior of the group in the study. For example, if a control group uses a checklist-
based inspection method and the experiment group uses perspective-based methods,
the former group may hear about the perspective-based method and perform their
inspections influenced by their own perspective. The latter may be the case if the
reviewer is an expert in a certain area.

Compensatory equalization of treatments. 1f a control group is given compensation
for being a control group, as a substitute for that they do not get treatments; this
may affect the outcome of the experiment. If the control group is taught another
new method as a compensation for not being taught the perspective-based method,
their performance may be affected by that method.

Compensatory rivalry. A subject receiving less desirable treatments may, as the
natural underdog, be motivated to reduce or reverse the expected outcome of the
experiment. The group using the traditional method may do their very best to show
that the old method is competitive.

Resentful demoralization. This is the opposite of the previous threat. A subject
receiving less desirable treatments may give up and not perform as good as it
generally does. The group using the traditional method is not motivated to do a
good job, while learning something new inspires the group using the new method.

8.8.3 Construct Validity

Construct validity concerns generalizing the result of the experiment to the concept
or theory behind the experiment. Some threats relate to the design of the experiment,
others to social factors.

Design threats. The design threats to construct validity cover issues that are related
to the design of the experiment and its ability to reflect the construct to be studied.

Inadequate preoperational explication of constructs. This threat, despite its exten-
sive title, is rather simple. It means that the constructs are not sufficiently defined,
before they are translated into measures or treatments. The theory is not clear
enough, and hence the experiment cannot be sufficiently clear. For example, if two
inspection methods are compared and it is not clearly enough stated what being
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‘better’ means. Does it mean to find most faults, most faults per hour, or most serious
faults?

Mono-operation bias. If the experiment includes a single independent variable,
case, subject or treatment, the experiment may under-represent the construct and
thus not give the full picture of the theory. For example, if an inspection experiment
is conducted with a single document as object, the cause construct is under-
represented.

Mono-method bias. Using a single type of measures or observations involves a risk
that if this measure or observation gives a measurement bias, then the experiment
will be misleading. By involving different types of measures and observations
they can be cross-checked against each other. For example, if the number of
faults found is measured in an inspection experiment, where fault classification is
based on subjective judgement, the relations cannot be sufficiently explained. The
experimenter may bias the measures.

Confounding constructs and levels of constructs. In some relations it is not
primarily the presence or absence of a construct, but the level of the construct
which is of importance to the outcome. The effect of the presence of the construct is
confounded with the effect of the level of the construct. For example, the presence or
absence of prior knowledge in a programming language may not explain the causes
in an experiment, but the difference may depend on if the subjects have 1, 3 or 5
years of experience with the current language.

Interaction of different treatments. If the subject is involved in more than one
study, treatments from the different studies may interact. Then you cannot conclude
whether the effect is due to either of the treatments or of a combination of
treatments.

Interaction of testing and treatment. The testing itself, i.e. the application of
treatments, may make the subjects more sensitive or receptive to the treatment. Then
the testing is a part of the treatment. For example, if the testing involves measuring
the number of errors made in coding, then the subjects will be more aware of their
errors made, and thus try to reduce them.

Restricted generalizability across constructs. The treatment may affect the studied
construct positively, but unintenionally affect other constructs negatively. This threat
makes the result hard to generalize into other potential outcomes. For example,
a comparative study concludes that improved productivity is achieved with a new
method. On the other hand, it can be observed that it reduces the maintainability,
which is an unintended side effect. If the maintainability is not measured or
observed, there is a risk that conclusions are drawn based on the productivity
attribute, ignoring the maintainability.

Social threats to construct validity. These threats are concerned with issues
related to behavior of the subjects and the experimenters. They may, based on the
fact that they are part of an experiment, act differently than they do otherwise, which
gives false results from the experiment.
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Hypothesis guessing. When people take part in an experiment they might try to
figure out what the purpose and intended result of the experiment is. Then they are
likely to base their behavior on their guesses about the hypotheses, either positively
or negatively, depending on their attitude to the anticipated hypothesis.

Evaluation apprehension. Some people are afraid of being evaluated. A form of
human tendency is to try to look better when being evaluated which is confounded
to the outcome of the experiment. For example, if different estimation models
are compared, people may not report their true deviations between estimate and
outcome, but some false but ‘better’ values.

Experimenter expectancies. The experimenters can bias the results of a study
both consciously and unconsciously based on what they expect from the experi-
ment. The threat can be reduced by involving different people which have no or
different expectations to the experiment. For example, questions can be raised in
different ways in order to give the answers you want.

8.8.4 External Validity

Threats to external validity are conditions that limit our ability to generalize the
results of our experiment to industrial practice. There are three types of interactions
with the treatment: people, place and time:

Interaction of selection and treatment. This is an effect of having a subject
population, not representative of the population we want to generalize to, i.e. the
wrong people participate in the experiment. An example of this threat is to select
only programmers in an inspection experiment when programmers as well as testers
and system engineers generally take part in the inspections.

Interaction of setting and treatment. This is the effect of not having the experimen-
tal setting or material representative of, for example, industrial practice. An example
is using old-fashioned tools in an experiment when up-to-date tools are common in
industry. Another example is conducting experiment on toy problems. This means
wrong ‘place’ or environment.

Interaction of history and treatment. This is the effect of that the experiment is
conducted on a special time or day which affects the results. If, for example,
a questionnaire is conducted on safety-critical systems a few days after a big
software-related crash, people tend to answer differently than a few days before,
or some weeks or months later.

The threats to external validity are reduced by making the experimental envi-
ronment as realistic as possible. On the other hand, reality is not homogenous.
Most important is to characterize and report the characteristics of the environment,
such as staff experience, tools, methods in order to evaluate the applicability in a
specific context.
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8.9 Priority Among Types of Validity Threats

There is a conflict between some of the types of validity threats. The four types
considered are internal validity, external validity, conclusion validity and construct
validity. When increasing one type, another type may decrease. Prioritizing among
the validity types is hence an optimization problem, given a certain purpose of the
experiment.

For example, using undergraduate students in an inspection experiment will
probably enable larger study groups, reduce heterogeneity within the group and give
reliable treatment implementation. This results in high conclusion validity, while the
external validity is reduced, since the selection is not representative if we want to
generalize the results to the software industry.

Another example is to have the subjects measure several factors by filling out
schemes in order to make sure that the treatments and outcomes really represent the
constructs under study. This action will increase the construct validity, but there is a
risk that the conclusion validity is reduced since more, tedious measurements have
a tendency to reduce the reliability of the measures.

In different experiments, different types of validity can be prioritized differently,
depending on the purpose of the experiment. Cook and Campbell [37] propose the
following priorities for theory testing and applied research:

Theory testing. In theory testing, it is most important to show that there is
a casual relationship (internal validity) and that the variables in the experiment
represent the constructs of the theory (construct validity). Adding to the experiment
size can generally solve the issues of statistical significance (conclusion validity).
Theories are seldom related to specific settings, population or times to which the
results should be generalized. Hence there is little need for external validity issues.
The priorities for experiments in theory testing are in decreasing order: internal,
construct, conclusion and external.

Applied research. In applied research, which is the target area for most of the
software engineering experiments, the priorities are different. Again, the relation-
ships under study are of highest priority (internal validity) since the key goal of
the experiment is to study relationships between causes and effects. In applied
research, the generalization — from the context in which the experiment is conducted
to a wider context — is of high priority (external validity). For a researcher, it is
not so interesting to show a particular result for company X, but rather that the
result is valid for companies of a particular size or application domain. Third, the
applied researcher is relatively less interested in which of the components in a
complex treatment that really causes the effect (construct validity). For example,
in a reading experiment, it is not so interesting to know if it is the increased
understanding in general by the reviewer, or it is the specific reading procedure
that helps the readers to find more faults. The main interest is in the effect itself.
Finally, in practical settings it is hard to get sufficient size of data sets, hence the
statistical conclusions may be drawn with less significance (conclusion validity).
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The priorities for experiments in applied research are in decreasing order: internal,
external, construct and conclusions.

It can be concluded that the threats to validity of experimental results are
important to evaluate and balance during planning of an experiment. Depending on
the purpose of the experiment, different validity types are given different priority.
The threats to an experiment are also closely related to the practical importance
of the results. We may, for example, be able to show a statistical significance,
but the difference is of no practical importance. This issue is further elaborated in
Sect. 10.3.14.

8.10 Example Experiment

This description is a continuation of the example introduced in Sect. 7.2. The input
to the planning phase is the goal definition. Some of the issues related to planning
have partially been addressed in the way the goal definition is formulated in the
example. It is already stated that students will be the subjects and the text also
indicates that the experiment will involve more than one requirements document.
Planning is a key activity when conducting an experiment. A mistake in the planning
step may affect the whole outcome of the experiment. The planning step includes
seven activities as shown in Fig. 8.1.

Context selection. The type of context is in many cases at least partially decided by
the way the goal definition is formulated. It is implicitly stated that the experiment
will be run off-line, although it could potentially be part of a student project, which
would have meant on-line although not as part of an industrial development project.
The experiment will be run with a mixture of M.Sc. and Ph.D. students.

An off-line experiment with students implies that it may be difficult to have time
to inspect a requirements document for a fully-fledged real system. In many cases,
experiments of this type have to resort to a requirements document with limited
features. In this specific case, two requirements documents from a lab package
(material available on-line for replication purposes) will be used. The choice to use
two requirements documents has some implications when it comes to the choice
of design type, which we will come back to. The requirements documents have
some limitations when it comes to features and hence they are to some extent to be
considered as ‘toy’ requirements documents.

The experiment can be considered as general in the sense that the objective is
to compare two reading techniques in general (from a research perspective), and
it is not about comparing an existing reading technique in a company with a new
alternative reading technique. The latter would have made the experiment specific
for the situation at the company. In both these cases, there are some issues to take
into account to ensure a fair comparison.

In the general research case, it is important that the comparison is fair in the sense
that the support for the two techniques being investigated is comparable. It is of
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course easy to find a very poor checklist and then provide good support for PBR.
This would favour PBR and hence the outcome of the experiment would definitively
be challenged. This is also the reason why having “no support” is not a good control.
An experimental comparison/evaluation must be based on having two comparable
methods with similar support. Using “no support” as a control group should be
avoided. It would only be interesting if the group having support performs worse
than those not having any support, or it is the ‘old’ way of working at a company.
However, this situation is quite rare and hence it is rarely worth performing an
experiment under these circumstances.

In the specific case, there is no problem with fairness in the type of support
provided, since as long as an existing technique is compared with a new alternative,
then it is fine from a support perspective. The main challenge in the specific case is
that the participants know the existing technique very well, while a new technique
must be taught to them. Thus, the new technique may have a disadvantage since
it is not as well known. On the other hand, it has the advantage of potentially
being more interesting to the subjects, since it means learning a new technique.
Thus, in this case the situation is not that clear-cut, but the potential biases in
favour of one or the other technique must be taken into consideration by the
researcher.

Hypothesis formulation. In the goal definition it is expressed that we would like
to compare both effectiveness and efficiency when it comes to detecting faults when
using two different reading techniques when conducting the inspection. The first
method is Perspective-based Reading (PBR) and the second method is Checklist-
based Reading (CBR). PBR is based on the reviewers having different perspectives
when performing the inspection. CBR is based on having a checklist for different
items that are likely to relate to faults in requirements documents.

The fact that the requirements documents to be used in the experiment have been
used in prior experiments, means that the number of faults is assumed to be known,
although it cannot be ruled out that new faults are found. It should also be noted that
effectiveness refers to the number of faults found out of the total number of faults,
while efficiency also includes time, i.e. whether more faults are found per time unit.
To be able to formulate the formal hypotheses, we let N be the number of faults and
Nt the number of faults found per time unit.

If we let:

*  Unppr and Wy g be the number of faults found using PBR and CBR respectively,
and

* Unippg and [y cpr be the number of faults found per time unit using PBR and
CBR respectively.

Then, the hypotheses are formulated as follows:
Effectiveness:

Ho : pinpgr = Kncr
Hy o lppe <> [Ancag
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It should be noted that we have chosen the alternative hypothesis as being any
difference between the two reading techniques. In other words, the alternative
hypothesis is formulated as a two-sided hypothesis with no assumption regarding
one technique being better than the other.

Efficiency:
Ho : pnippr = MNicar
Hy @ pnipgr <> INicar

The hypotheses mean that we would like to show with a statistical significance
that the two reading techniques find a different number of faults and a different
number of faults are found per time unit. We would like to refute the null hypothesis.
It must be noted that not being able to refute the null hypothesis does notr imply
accepting the null hypothesis. This type of outcome may be due to having too few
subjects and not due to the reading techniques being equally good at detecting faults.

Variables selection. The independent variable is the reading technique and it has
two levels: PBR and CBR, respectively. The dependent variables are the number
of faults found and the number of faults found per time unit. This means that we
must ensure that the subjects can clearly mark faults found so that the researcher
can compare the faults marked with the known set of faults. Furthermore, we must
ensure that the subjects can keep track of time and fill in the time when a specific
fault was found. It must be noted that it is important to keep track of the time for a
specific fault, since a fault may be a false positive and hence we must know which
time should be removed from the data set too.

Selection of subjects. Preferably it would be possible to find subjects for the
experiment by random. However, in most experiments the researcher tends to be
forced to use subjects that are available. This means often students participating in
courses at the university become the subjects in experiments run at the university,
which is the case in this example experiment. In this case, it is important that
the subjects still have the freedom to deny participation, without any penalty for
the individual. If the participation in the experiment gives course credit points,
alternative options should be provided.

If the purpose of the experiment would be to compare how the two student groups
perform using the different methods, then the treatment in the experiment is ruled
by the selection of subjects, i.e. the characteristics of the student groups. In fact, this
would make it a quasi-experiment. Independently, it is important to characterize the
selected subjects to help assessing the external validity of the study.

Choice of design type. Once we know which subjects that are going to participate,
it is time to take the next step when it comes to randomization and decide how
the subjects should be divided into groups. A good approach is often to use a pre-
test to try to capture the experience of the subjects and based on the outcome of
the pre-test divide the subjects into experience groups from which we randomly
select subjects to the groups in the experiment. This is done to try to ensure that
the groups are as_equal as_possible when it comes to previous experiences, still
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maintaining the randomization over the subjects. This is referred to as blocking,
i.e. we block on previous experience to try to ensure that it does not affect the
outcome of the experiment. Finally, the objective is in most cases to have equally
large groups, i.e. we want a balanced design. The choice of design type may be
affected by the number of subjects available. If having many subjects, it is possible
to consider more experimental combinations or consider using each subjects for
only one treatment. With relatively few subjects, it becomes more challenging to
design the experiment and to use the subjects wisely without compromising the
objectives of the experiment.

The next step is to decide on the design type. The experiment includes one
factor of primary interest (reading technique) with two treatments (PBR and CBR,
respectively), and a second factor that is not really of interest in the experiment
(requirements document). Based on the previous decisions taken, the natural design
is a completely randomized design where each groups first uses either PBR or CBR
on one of the requirements document and then uses the other reading technique on
the other requirements document. However, decisions have to be taken on order too.
We have two options: (1) either have both groups using different reading techniques
on one of the requirements documents first and then switch reading techniques when
inspecting the other requirements document, or (2) have both groups using the same
reading technique on different requirements documents. In either case, there is an
ordering issue. In the first case, one of the requirements document will be used
before the other and in the second case one reading technique will be used before
the other. Thus, we have to consider which poses the least threats to the experiment.
Validity threats are further elaborated below.

Another design option would have been to allow one group to use PBR on a
requirements document and the other group use CBR on the same document. The
advantage would be that a larger requirements document could be used in the same
time frame. The downside is that only half as many data points are generated. In an
experiment it is often the case that a certain amount of time is available for running
the experiment. Thus, it becomes a question of how to use the time in the most
effective way, i.e. to get as good output from the experiment as possible to address
the hypotheses stated. The choice of design is very important and it is always a
trade-off. Different types of designs have different advantages and disadvantages.
Furthermore, the choice also forms the basis for which statistical method that can
be applied on the data. This is further discussed in Sect. 10.4.

In this specific case, a completely randomized design is chosen. One group is
first assigned to using PBR on the first requirements document and the other group
is assigned to use CBR on the same requirements document. This alternative is
chosen since it is believed that an order between the reading techniques is worse
than an order between the requirements documents. This is particular the case since
the primary interest is in the difference between reading techniques and not any
differences between the two requirements documents.

Instrumentation. Given that the experiment is based on a lab package, the
requirements_documents_are already available and hence also a list of detected
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faults (at least known so far). Otherwise, suitable requirements documents should
be identified, preferably with a known number of faults to be able to determine the
effectiveness of the reading technique.

The guidelines for the two reading techniques must be developed or reused from
elsewhere. Here it is important to ensure a fair comparison, as mentioned above, by
providing comparable support for the two methods.

Forms for filling out faults found must be developed or reused from another
experiment. It is crucial to ensure traceability between the requirements document
and the form, for example by numbering the faults in the requirements document
while capturing the information about the fault in the form.

Validity evaluation. Finally, the validity threats must be evaluated. This is impor-
tant to do upfront to ensure that the threats are minimized. It is close to impossible
to avoid all threats. Having said that, it still means that if possible all threats should
be identified and whenever possible mitigated.

The evaluation of the threats in this specific example is left as an exercise; see
Exercise 8.5 in Sect. 8.11.

Next step in the experiment process. Based on the steps described above for the
example, we are hopefully ready to run the experiment. However, before doing so it
is recommended that some colleagues review the experiment design. Furthermore,
itis good if it is possible to run a trial run of the experiment, although it means using
one or more persons that otherwise could have been subjects in the experiment.
Thus, it is important to use potential subjects wisely.

8.11 Exercises

8.1. What are a null hypothesis and an alternative hypothesis?
8.2. What is type-I-error and type-II-error respectively, which is worst and why?
8.3. In which different ways may subjects be sampled?

8.4. What different types of experiment designs are available, and how do the
design relate to the statistical methods to apply in the analysis?

8.5. Which are the threats (consider all four types of validity threats) that exist in
the example in Sect.8.10 and explain why they are threats, what is the trade-off
between the different validity types?
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Chapter 9
Operation

When an experiment has been designed and planned it must be carried out in
order to collect the data that should be analyzed. This is what we mean with
the operation of an experiment. In the operational phase of an experiment, the
treatments are applied to the subjects. This means that this part of the experiment is
the part where the experimenter actually meets the subjects. In most experiments in
software engineering there are only a few other times when the subjects actually are
involved. These occasions can, for example, be in a briefing before subjects commit
to participate in the experiment and after the experiment when the results of the
experiment are presented to the subjects. Since experiments in software engineering
in most cases deal with humans, although it is possible to run technology-oriented
experiments to as discussed in Sect. 2.4. This chapter deals to some extent with how
to motivate people to participate and take part in experiments.

Even if an experiment has been perfectly designed and the collected data
is analyzed with the appropriate analysis methods, the result will be invalid if
the subjects have not participated seriously in the experiment. Since the field of
experimental psychology also deals with experiments involving humans, guidelines
for conducting experiments from that field [4,29] are to some extent applicable also
in software engineering.

The operational phase of an experiment consists of three steps: preparation
where subjects are chosen and forms etc. are prepared, execution where the subjects
perform their tasks according to different treatments and data is collected, and data
validation where the collected data is validated. The three steps are displayed in
Fig.9.1 and they are further described in the sequel of this chapter.

9.1 Preparation

Before the experiment is actually executed there are some preparations that have to
be made. The better these preparations are performed the easier it will be to execute
therexperiment) Thererare tworimportantaspects in the preparation. The first is to
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Fig. 9.1 Three steps in experiment operation

select and inform participants, and the second is to prepare material such as forms
and tools.

9.1.1 Commit Participants

Before an experiment can be started, people who are willing to act as subjects have
to be found. It is essential that the people are motivated and willing to participate
throughout the whole experiment.

In many cases it is important to find people who work with tasks in the
experiment that are similar to their ordinary work tasks. For example, if an
experiment involves writing C-code with different kinds of tools, it would probably
make sense to involve persons who are used to write C-code, and not to involve
Java-programmers. If people are chosen that are not a representative set of the
people that we want to be able to make statements about, this will be a threat to
the external validity of the experiment, see Chap. 8. The selection of subjects, in
terms of sampling technique, is discussed in Sect. 8.4.

When the right people are found and it is necessary to convince these people to
participate in the experiment. Several ethical aspects have to be considered when
people are participating as subjects.

Obtain consent. The participants have to agree to the research objectives. If the
participants do not know the intention of the work or the work does not comply
with what they thought they should do when they agreed to participate, there is a
risk that they will not perform the experiment according to the objectives and their
personal ability. This could result in that the data becomes invalid. It is important to
describe how the result of the experiment will be used and published. It should be
made clear to the participants that they are free to withdraw from the experiment.
Sometimes a trade-off must be made between this aspect and the design with respect
to validity. If the participants are affected by the experiment as such, this will affect
the validity of the experiment.

Sensitive results. If the results obtained in the experiment are sensitive for the
participants, it is important to assure the participants that the results of their personal
performance in the experiment will be kept confidential. It is sometimes hard
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to judge if the result is sensitive or not, but generally it can be said that if the
result would have a meaning for the participants outside the experiment it is in
some way sensitive. For example, if the experiment measures the productivity
of a programmer, the result would indicate how skilled the programmer is as a
programmer and the result would be sensitive. On the other hand if participants
are asked to use a method for acceptance testing and they normally never deal with
this type of testing, the result of the experiment would probably not be that sensitive.

Inducements. One way to attract people to an experiment is to offer some kind of
inducement. The value of it should however not be too large, since this could cause
people to participate merely to receive the inducement. This would not motivate
people to seriously participate in the experiment.

Disclosure. Disclosure means to reveal all details of the experiment as openly
as possible to the experiment subjects. The opposite, to deceive or betray the
participants, is generally not to acceptable. If alternative ways of conducting the
experiment are available these methods should be used instead. If non-disclosure
is the only alternative it should only be applied if it concerns aspects that are
insignificant to the participants and do not affect their willingness to participate in
the experiment. In case of partial disclosure, the situation should be explained and
revealed to the participants as early as possible.
For more discussion on ethical aspects in experimentation, see Sect.2.11.

9.1.2 Instrumentation Concerns

Before the experiment can be executed, all experiment instruments must be ready,
see Sect. 8.6. This may include the experiment objects, guidelines for the experiment
and measurement forms and tools. The required instruments are determined by the
design of the experiment and the method that will be used for data collection.

If the subjects themselves should collect data, this means in most cases that some
kind of forms must be handed out to the participants. One thing to determine when
forms are constructed is whether they should be personal or the participants should
fill them out anonymously. If there should be no additional studies and there hence
is no real need for the experimenter to distinguish between different participants, it
may be appropriate to use anonymous forms. This will however mean that there is
no possibility to contact the participant if something is filled out in an unclear way.

In many cases it is appropriate to prepare one personal set of instruments
for every participant. This is because many designs deal with randomization
and repeated tests, such that different participants should be subject to different
treatments. This can be done also when the participants are anonymous.

If data should be collected in interviews, questions should be prepared before the
execution of the experiment. Here it may also be appropriate to prepare different
questions for different participants.
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9.2 Execution

The experiment can be executed in a number of different ways. Some experiments,
such as simple inspection experiments can be carried out at one occasion when all
participants are gathered at, for example, a meeting. The advantage of this is that the
result of the data collection can be obtained directly at the meeting and there is no
need to contact the participants and later on ask for their respective results. Another
advantage is that the experimenter is present during the meeting and if questions
arise they can be resolved directly.

Some experiments are, however, executed during a much longer time span, and it
is impossible for the experimenter to participate in every detail of the experiment
and the data collection. This is, for example, the case when the experiment is
performed in relation to one or several large projects, where different methods
for development are evaluated. An example of such an experiment is presented by
Ohlsson and Wohlin [128], where a course in large-scale software development was
studied during 2 years. Each year, seven projects were run in parallel with a total
of approximately 120 students. The objective of the experiment by Ohlsson and
Wohlin [128] was to evaluate different levels of formality when collecting effort
data.

9.2.1 Data Collection

Data can be collected either manually by the participants that fill out forms,
manually supported by tools, in interviews, or automatically by tools.

An advantage of using forms, is that it does not require so much effort for
the experimenter, since the experimenter does not have to actively take part in
the collection. A drawback is that there is no possibility for the experimenter to
directly reveal inconsistencies, uncertainties and flaws in the forms etc. This type
of faults cannot be revealed until after the data collection or if the participants
raise attention to faults or have questions. An advantage with interviews is that the
experimenter has the possibility to communicate better with the participants during
the data collection. A drawback is of course that it requires more effort from the
experimenter.

9.2.2 Experimental Environment

If an experiment is performed within a regular development project, the experiment
should not affect the project more than necessary. This is because the reason for
performing the experiment within the project is to see the effects of different
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treatments in an environment such as the one in the project. If the project
environment is changed too much because of the experiment that effect will be lost.

There are however some cases where it is appropriate with some interaction
between the experiment and the project. If the experimenter, for example, reveals
that some parts of the project could be performed better or that estimations are not
correct, it would be appropriate for the experimenter to tell the project leader. This
type of direct feedback from the experiment to the project can help to motivate
project personnel to participate in the experiment.

9.3 Data Validation

When data has been collected, the experimenter must check that the data is
reasonable and that it has been collected correctly. This deals with aspects such as
if the participants have understood the forms and therefore filled them out correctly.
Another source of error is that some participants may not have participated in
the experiment seriously and some data therefore should be removed before the
analysis. Outlier analysis is further discussed in Sect. 10.2.

It is important to review that the experiment has actually been conducted in the
way that was intended. It is, for example, important that the subjects have applied
the correct treatments in the correct order. If this type of misunderstandings have
occurred, the data is of course invalid.

One way to check that the participants have not misunderstood the intentions of
the experimenter, is to give a seminar, or in some other way present the results of
the data collection. This will give the participants the possibility to reflect on results
that they do not agree with. It also helps building long term trust, as discussed in
Sect.2.11.

9.4 Example Operation

The experiment design from Sect. 8.10 is the input to the operation, which consists
of three steps that must be addressed.

Preparation. First of all the subjects must be identified. In this example, Ph.D. and
M.Sc. students are invited as subjects. Once having a potential set of participants, it
is important to convince them to participate and get their commitment to participate
in the experiment. After having an initial commitment, consent must be ensured
from the participants. It is recommended that consent forms be used even if the
formal rules may not require it. Other issues to take into account in relation to ethics
are described in Sect.9.1.1. Assigning subjects to treatment must be done using a
randomization procedure. If the design includes a blocking factor (type of student),
subjects _should be split according to that factor, and then randomly assigned to
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treatments within each blocking group. If a balanced design is chosen, the selection
must end up in the same number of subjects for each group.

The next step is to ensure that the infrastructure needed is in place. This includes
having a suitable room booked, for example, providing sufficient distance between
the subjects. Copies of all documents and forms must be available for all subjects.
Given that time is going to be collected, a clock is needed in the room. It cannot be
assumed that everybody has access to his or her own clock.

Execution. During the execution it is important to ensure the people are suitably
spread out in the room. As it is an inspection experiment, it should be possible to
run the experiment once with all subjects doing the inspection at the same time.
This also means that it is easy to provide support for any questions that may arise
during the experiment. Depending on whether the data should be collected by filling
in forms by hand or by use of a computer, preparation has to be done accordingly.

Data validation. Finally, the data has to be validated. It may be the case that one
or several subjects leave the experiment very early and their data forms have to be
checked carefully to ensure that they have filled in the forms in a reasonable way.
Furthermore, it must be checked that everybody has understood how to fill in the
data in a correct way. If this is not the case, it may be the case that data from one or
several subjects must be removed.

9.5 Exercises

9.1. Which factors should be considered when selecting subjects?
9.2. Why are ethical issues important in experimentation?

9.3. Why is it necessary to prepare the instrumentation carefully before an experi-
ment?

9.4. What is data validation and why should it be done before the statistical
analysis?

9.5. How should we handle subjects that have a personal interest in the outcome of
the experiment?

oLl Zyl_i.lbl




Chapter 10
Analysis and Interpretation

The experiment data from the operation is input to the analysis and interpretation.
After collecting experimental data in the operation phase, we want to be able to
draw conclusions based on this data. To be able to draw valid conclusions, we must
interpret the experiment data. Quantitative interpretation may be carried out in three
steps, as depicted in Fig. 10.1.

In the first step, the data is characterized using descriptive statistics, which
visualize central tendency, dispersion, etc. In step 2, abnormal or false data points
are excluded, thus reducing the data set to a set of valid data points. In the third step,
the data is analyzed by hypothesis testing, where the hypotheses of the experiment
are evaluated statistically, at a given level of significance. These steps are described
in more detail in the sequel of this chapter.

10.1 Descriptive Statistics

Descriptive statistics deal with the presentation and numerical processing of a data
set. After collecting experimental data, descriptive statistics may be used to describe
and graphically present interesting aspects of the data set. Such aspects include
measures indicating, for example, where on some scale the data is positioned and
how concentrated or spread out the data set is. The goal of descriptive statistics is to
get a feeling for how the data set is distributed. Descriptive statistics may be used
before carrying out hypothesis testing, in order to better understand the nature of the
data and to identify abnormal or false data points (so called outliers).

In this section, we present a number of descriptive statistics and plotting
techniques that may help to get a general view of a data set. The scale of
measurement (see Chap.3) restricts the type of statistics that are meaningful to
compute. Table 10.1 shows a summary of some of these statistics in relation to the
scales under which they are admissible. It should, however, be noted that measures
of one scale type can be applied to the more powerful scales, for example, mode can
be used for all four scales in Table 10.1.

C. Wohlin et al., Experimentation.in Software Engineering, 123
DOI 10.1007/978-3-642-29044-2__10, © Springer- Verlag Berlin Heidelberg 2012
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Analysis and interpretation
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Fig. 10.1 Three steps in quantitative interpretation

Table 10.1 Some relevant statistics for each scale

Scale type Measure of Dispersion Dependency
central
tendency
Nominal Mode Frequency
Ordinal Median, Interval of variation Spearman corr. coeff.
percentile Kendall corr. coeff.
Interval Mean, variance, Standard deviation Pearson corr. coeff.
and range
Ratio Geometric mean Coefficient of variation

10.1.1 Measures of Central Tendency

Measures of central tendency, such as mean, median, and mode, indicate a ‘middle’
of a data set. This ‘midpoint’ is often called average and may be interpreted as an
estimation of the expectation of the stochastic variable from which the data points
in the data set are sampled.

When describing the measures of central tendency, we assume that we have n
data points x; .. . x,, sampled from some stochastic variable. The (arithmetic) mean,
denoted X, is calculated as:

The mean value is meaningful for the interval and ratio scales. For example, we
may compute the mean for the data set (1, 1, 2, 4) resulting in x = 2.0.

The median, denoted X, represents the middle value of a data set, following that
the number of samples that are higher than the median is the same as the number
of samples that are lower than the median. The median is calculated by sorting the
samples in ascending (or descending) order and picking the middle sample. This is
well defined if n is odd. If n is even, the median may be defined as the arithmetic
mean of the two middle values. The latter operation requires that the scale is at least
interval. If the scale is ordinal, one of the two middle values may be selected by
random choice, or the median may be represented as a pair of values.
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Symmetric Asymmetric

Fig. 10.2 A symmetric distribution has the same values of mean, median, and mode, while they
may differ if the distribution is asymmetric

The median value is meaningful for the ordinal, interval, and ratio scales. As
an example, we may compute the median for the data set (1, 1,2, 4) resulting in
X =1.5.

The median is a special case of the percentile, namely the 50%-percentile,
denoted x50, indicating that 50% of the samples lies below xs50q. In general x,
denotes the percentile where p% of the samples lies below this value. The percentile
value is meaningful for the ordinal, interval, and ratio scales.

The mode represents the most commonly occurring sample. The mode is
calculated by counting the number of samples for each unique value and selecting
the value with the highest count. The mode is well defined if there is only one value
that is more common than all others are. If an odd number of samples have the
same occurrence count, the mode may be selected as the middle value of the most
common samples. The latter operation requires that the scale is at least ordinal. If
the scale is nominal, the mode may be selected among the most common samples
by random choice or represented as a pair of the most common values.

The mode value is meaningful for the nominal, ordinal, interval and ratio scales.
As an example, we may compute the mode for the data set (1,1,2,4) giving a
mode of 1.

A less common measure of central tendency is the geometric mean, which is
calculated as the n:th root of the product of all samples, as shown below.

The geometric mean is well defined if all samples are non-negative and meaning-
ful for the ratio scale. The (arithmetic) mean and median are equal if the distribution
of samples is symmetric. If the distribution is both symmetric and has one unique
maximum, all these three measures of central tendency are equal. However, if the
distribution of samples is skewed, the values of the mean, median and mode may
differ, see Fig. 10.2.

If, for example, the higher tail of the distribution is long, the mean is increased,
while the median and mode is unaffected. This indicates that the mean is a more
sensitive measure. However, it requires at least an interval scale, and hence may not
always be meaningful.



126 10 Analysis and Interpretation
10.1.2 Measures of Dispersion

The measures of central tendency do not convey information of the dispersion of
the data set. Thus, it is necessary to measure the level of variation from the central
tendency, i.e. to see how spread or concentrated the data is. The (sample) variance,
denoted 52, is a common measure of dispersion, and is calculated as:

5t = ! Xn:(x,- - x)?

n—1

Hence, the variance is the mean of the square distance from the sample mean.
It may seem odd that the dividend is n — 1 and not just n, but by dividing withn —1,
the variance gets some desirable properties. In particular, the sample variance is an
unbiased and consistent estimation of the variance of the stochastic variable. The
variance is meaningful for the interval and ratio scales.

The standard deviation, denoted s, is defined as the square root of the variance:

1 < _
s = n_IZ(x,-—x)z

i=1

The standard deviation is often preferred over the variance as it has the same
dimension (unit of measure) as the data values themselves. The standard deviation
is meaningful for the interval and ratio scales.

The range of a data set is the distance between the maximum and minimum data
value:

range = Xqx — Xomin

The range value is meaningful for the interval and ratio scales.

The variation interval is represented by the pair (X, Xmay) including the
minimum and maximum of the data values. This measure is meaningful for ordinal,
interval and ratio scales.

Sometimes the dispersion is expressed in percentages of the mean. This value is
called the coefficient of variation and is calculated as:

1002
X

The coefficient of variation measure has no dimension and is meaningful for the
ratio scale.

A general view of dispersion is given by the frequency of each data value. A fre-
quency table is constructed by tabulating each unique value and the count of occur-
rence for each value. The relative frequency is calculated by dividing each frequency
by the total number of samples. For the data set (1,1,1,2,2,3,4,4,4,5,6,6) with
13 samples we can construct the frequency table shown in Table 10.2. The frequency
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Table 10.2 A frequency

table example Value Frequency Relative frequency
1 3 23%
2 2 15%
3 1 8%
4 3 23%
5 1 8%
6 2 15%
7 1 8%

10.1.3 Measures of Dependency

When the data set consists of related samples in pairs (x;, y;) from two stochastic
variables, X and Y, it is often interesting to examine the dependency between these
variables.

If X and Y are related through some function, y = f(x), we want to estimate
this function. If we suspect that the function y = f(x) is linear and could be written
on the form y = o + PBx, we could apply linear regression. Regression means
fitting the data points to a curve, and in our case we will show how fitting a line
that minimizes the sum of the quadratic distances to each data point makes linear
regression. Before we present the formulas we define the following shorthands for
some commonly occurring sums:

Syx = Xn:(xi _2)2

i=1

Syy = Z(yi - )_’)2

i=1

Su =3 - D0 - ) (fxm) - (Zx) (Z y,-)

i=1 i=1 i=1 i=1

The sums can be used to compute the regression line y = y + f(x — X) where
the slope of the line is:

XX

and the line crosses the y-axis at« = y — BX.

If the dependency is non-linear, it may be possible to find a transformation of
data, so that the relation becomes linear, and linear regression can be used. If, for
example, the relation is exponential, y = ax?, this implicates that a logarithmic
transformation of the data results in the linear relation log(y) = log(«) + Blog(x).
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After the logarithmic transformation we can use linear regression to calculate the
parameters of the line.

For a single number that quantifies how much two data sets, x; and y;, vary
together, we can use the covariance. This measure of dependency, denoted ¢y, is

defined as:
Sxy

n—1

Cxy =

The covariance is meaningful for interval and ratio scales. The covariance is
dependent on the variance of each variable, and to be able to compare dependencies
between different related variables, the covariance may be normalized with the
standard deviations of x; and y;. If we do this we get the correlation coefficient
r (also called Pearson correlation coefficient), which is calculated as:

— Cxy _ Sxy _ (l’l Z?:l xiyi) - (Z?=l xi)(z:l:l yl)
SeSy /SxxSyy \/(” i xt = Qi x)D Y v = Qi vi)D)

The r-value is between —1 and +1, and if there is no correlation r equals zero.
The opposite is however not true. The x; and y; values may be strongly correlated in
a non-linear manner even if r = 0. The (Pearson) correlation coefficient measures
only linear dependency and is meaningful if the scales of x; and y; are interval or
ratio, and works good for data that is normally distributed.

If the scale is ordinal or if the data is far from normally distributed, the
Spearman rank-order correlation coefficient, denoted r,, can be used. The Spearman
correlation is calculated in the same manner as the Pearson correlation except that
the ranks (i.e., the order numbers when the samples are sorted) are used instead of
the sample values, see for example Siegel and Castellan [157].

Another measure of dependency is the Kendall rank-order correlation coefficient,
denoted 7. The Kendall correlation is suitable as a measure for the same sort of
data as the Spearman correlation, i.e. at least ordinal samples in pair. The Kendall
correlation differs, however, in the underlying theory as it focuses on counting
agreements and disagreements in ranks between samples, see for example Siegel
and Castellan [157].

If we have more than two variables, we can apply multivariate analysis, including
techniques such as multiple regression, principal component analysis (PCA), cluster
analysis, and discriminant analysis. These techniques are described by, for example,
Manly [118] and Kachigan [90,91].

10.1.4 Graphical Visualization

When describing a data set, quantitative measures of central tendency, dispersion,
and dependency, should be combined with graphical visualization techniques.
Graphs are very illustrative and give a good overview of the data set.
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Fig. 10.4 A box plot

One simple but effective graph is the scatter plot, where pairwise samples
(x;, y;) are plotted in two dimensions, as shown in Fig. 10.3.

The scatter plot is good for assessing dependencies between variables. By
examining the scatter plot, it can be seen how spread or concentrated the data points
are, and if there is a tendency of linear relation. Atypical values (outliers) may
be identified, and the correlation may be observed. In Fig. 10.3, there is a linear
tendency with a positive correlation, and we may observe potential outliers. In this
particular case there is one candidate outlier.

The box plot is good for visualizing the dispersion and skewedness of samples.
The box plot is constructed by indicating different percentiles graphically, as shown
in Fig. 10.4. Box plots can be made in different ways. We have chosen an approach
advocated by, for example Fenton and Pfleeger, and Frigge et al. [56,60]. The main
difference between the approaches is how to handle the whiskers. Some literature
proposes that the whiskers should go to the lowest and highest values respectively,
see for example Montgomery [125]. Fenton and Pfleeger [56] propose using a value,
which is the length of the box, multiplied with 1.5 and added or subtracted from the
upper and lower quartiles, respectively.

The middle bar in the box m, is the median. The lower quartile /¢, is the 25%
percentile (the median of the values that are less than m), and the upper quartile ug
is the 75% percentile (the median of the values that are greater than m). The length
of the boxis d = ug — lq.

The tails of the box represent the theoretical bound within which it is likely to
find all data points if the distribution is normal. The upper tail ut is ug + 1.5d and
the lower ta11 ltislg—1. 5d [60] The tail values are truncated to the nearest actual

3 mean ess-values (such as negative lines of code).
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Values outside the lower and upper tails are called outliers, and are shown
explicitly in the box plot. In Fig. 10.4, there are three outliers.

The histogram can be used to give an overview of the distribution density of the
samples from one variable. A histogram consists of bars with heights that represent
the frequency (or the relative frequency) of a value or an interval of values, as
shown in Fig. 10.5. The histogram is thus a graphical representation of a frequency
table. One distribution of particular interest is the normal distribution, since it is
one aspect that should be taken into account when analyzing the data. Thus, a plot
could provide a first indication whether the data resembles a normal distribution or
not. It is also possible to test the data for normality. This is further discussed in
Sect. 10.3 when introducing the Chi-2 test.

The cumulative histogram, illustrated in Fig. 10.6, may be used to give a picture
of the probability distribution function of the samples from one variable. Each bar
is the cumulative sum of frequencies up to the current class of values.

A pie chart, as illustrated in Fig. 10.7, shows the relative frequency of the data
values divided into a specific number of distinct classes, by constructing segments
in a circle with angles proportional to the relative frequency.
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Fig. 10.7 A pie chart
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10.2 Data Set Reduction

In Sect. 10.3, a number of statistical methods are described. All methods have in
common that the result of using them, depend much on the quality of the input data.
If the data, that the statistical methods are applied on, does not represent what we
think it represents, then the conclusions that we draw from the results of the methods
are of course not correct.

Errors in the data set can occur either as systematic errors, or they can occur as
outliers, which means that the data point is much larger or much smaller than one
could expect looking at the other data points, see Fig. 10.8.

One effective way to identify outliers is to draw scatter plots, as shown in
Fig. 10.8. Another way is to draw box plots, as illustrated in Fig. 10.4. There
are some statistical methods available for detecting outliers. These methods can,
for example, be based on that the data comes from a normal distribution and
determining the probability of finding a value such as the largest or smallest value
from this distribution. This can, for example, be done by looking at the difference
between possible outliers and the mean of all values or at the difference between
the outlier and its closest value, and then determining the probability of finding as
large difference as was found. This study is conducted to evaluate if it is possible
that the outlier found can come from the normal distribution, although it seems like
an extreme value.

Notice that data reduction as discussed here is related to data validation as
discussed in Chap. 9. Data validation deals with identifying false data points based
on the execution of the experiment, such as determining if people have participated
seriously in the experiment. The type of data reduction discussed in this section is
y based on the experiment execution, but
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instead looking at the results from the execution in the form of collected data and
taking into account, for example, descriptive statistics.

When outliers have been identified, it is important to decide what to do with
them. This should not only be based on the coordinates in the diagram, here it is
important to analyze the reasons for the outliers. If the outlier is due to a strange or
rare event that never will happen again, the point could be excluded. This can, for
example, be the case if the point is completely wrong or misunderstood.

If the outlier is due to a rare event that may occur again, for example, if a
module was implemented by inexperienced staff, it is not advisable to exclude the
value from the analysis, because there is much relevant information in the outlier.
If the outlier is due to a variable that was not considered before, such as the staff
experience, it may be considered to base the calculations and models also on this
variable. It is also possible to derive two separate models. In the case with staff
experience it means one model based on normal staff (with the outlier removed)
and one separate model for inexperienced staff. How to do this must be decided for
every special case.

It is not only invalid data that can be removed from the data set. It is sometimes
ineffective to analyze redundant data if the redundancy is too large. One way to
identify redundant data is through factor analysis and principal component analysis
(PCA). These techniques identify orthogonal factors that can be used instead of the
original factors. It would lead too far to describe this type of techniques in this book.
Refer instead to, for example, Kachigan [90,91] and Manly [118].

10.3 Hypothesis Testing

10.3.1 Basic Concept

The objective of hypothesis testing is to see if it is possible to reject a certain null
hypothesis, Hy, based on a sample from some statistical distribution. That is, the
null hypothesis describes some properties of the distribution from which the sample
is drawn and the experimenter wants to reject that these properties are true with
a given significance. The null hypothesis is also discussed in Chap.8. A common
case is that the distribution depends on a single parameter. Setting up Hj then means
formulating the distribution and assigning a value to the parameter, which will be
tested.

For example, if an experimenter observes a vehicle and wants to show that the
vehicle is not a car. The experimenter knows that all cars have four wheels, but also
that there are other vehicles than cars that have four wheels. A very simple example
of a null hypothesis can be formulated as “Hj: the observed vehicle is a car”.

To test Hp, a test unit, 7, is defined and a critical area, C, is given as well which
is a part of the area over which ¢ varies. This means that the significance test can be
formulated as:
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e Ifr € C,reject Hy
o Ift ¢ C,donotreject Hy

In our example, the test unit ¢ is the number of wheels and the critical area is
C=1,2,3,5,6,.... The testis: if t < 3 or ¢t > 5, reject Hy, otherwise do not
reject Hy.

If it is observed that r = 4, it means that the hypothesis cannot be rejected and
no conclusion can be drawn. This is because there may be other vehicles than cars
with four wheels.

The null hypothesis should hence be formulated negatively, i.e. the intention of
the test is to reject the hypothesis. If the null hypothesis is not rejected, nothing
can be said about the outcome, while if the hypothesis is rejected, it can be stated
that the hypothesis is false with a given significance (o), see below. When a test is
carried out it is in many cases possible to calculate the lowest possible significance
(often denoted the p-value) with which it is possible to reject the null hypothesis.
This value is often reported from statistical analysis packages.

The critical area, C, may have different shapes, but it is very common that it has
some form of intervals, for example ¢ < a or ¢t > b. If C consists of one such
interval it is one-sided. If it consists of two intervals (f < a,t > b, wherea < b ),
it is two-sided.

Three important probabilities concerning hypothesis testing are:

a = P(type-l-error) = P(reject Hy | Hy is true)
B = P(type-ll-error) = P(not reject Hy | Hy is false)
Power = 1 — 8 = P(reject Hy | Hy is false)

These probabilities are also discussed in Chap. 8.

We try here to illustrate the concepts in a small example describing a simple but
illustrative test called the binomial test. An experimenter has measured a number
of failures during operation for a product and classified them as corruptive (faults
that do corrupt the program’s data) and non-corruptive (faults that do not corrupt the
program’s data). The experimenter’s theory is that the non-corruptive faults are more
common than the corruptive faults. The experimenter therefore wants to perform a
test in order to see if the difference in the number of faults of the different types is
due to coincident or if it reveals a systematic difference.

The null hypothesis is that there is no difference in the probability of receiving
a corruptive fault and receiving a non-corruptive fault. That is, the null hypothesis
can be formulated as:

Hy : P(corruptive fault) = P (non-corruptive fault) = 1/2

It is decided that o should be less than 0.10. The experimenter has received the
following data:
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e There are 11 faults that are non-corruptive.
e There are four faults that are corruptive.

If the null hypothesis is true, the probability of obtaining as few as four (i.e., four
or less) corruptive faults out of 15 is

4 i 15—i 4
15) /1 1 1 15
P (0-4 corruptive faults) = E ( . ) (5) (5) =55 E (i ) = 0.059
i
i=0

i=0

That is, if the experimenter concludes that the data that has been received shows
that the non-corruptive faults are more common than the corruptive faults, the
probability of committing a type-I-fault is 0.059. In this case the experimenter can
reject Hy because 0.059 < 0.10.

The probability of receiving five or less corruptive faults, if the null hypothesis
is true, can be computed to be 0.1509. This is larger than 0.10, which means that 5
corruptive faults out of 15 would not be sufficient to reject Hy. The experimenter
can therefore decide more formally to interpret the data in an experiment with 15
received faults as:

e If four or less faults are corruptive, reject Hy.
e If more than four faults are corruptive, do not reject Hy.

To summarize, the number of received corruptive faults (out of 15 faults) is the
test unit and the critical area is 0, 1, 2, 3 and 4 (corruptive faults).

Based on this, it is interesting to determine the power of the formulated test. Since
the power is the probability of rejecting Hj if Hj is not true, we have to formulate
what we mean with that Hj is not true. In our example this can be formulated as:

P(corruptive fault) < P(non-corruptive fault)

Since the sum of the two probabilities equals 1, this can also be formulated as:

P(corruptive fault) = a < 1/2

The probability of receiving four or less corruptive faults out of 15 faults (i.e.,
the probability of rejecting Hy if H is false) is:

4
p=7 (ll-s)ai(l —a)'¥
=0

This probability is plotted for different values of a in Fig. 10.9.

It can be seen that the power of the test is high if the difference between the
probabilities of receiving a corruptive fault and a non-corruptive fault is large. If,
for example, a = 0.05 there is a very great chance that there will be four or fewer
corruptive faults. On the other hand, if the difference is very small, the power will
be smaller. If, for example, @ = 0.45 there is a great chance that there will be more




10.3 Hypothesis Testing 135

Fig. 10.9 Power of a one 1
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There are a number of factors affecting the power of a test. First, the test itself
can be more or less effective. Second, the sample size affects the power. A larger
sample size means higher power. Another aspect that affects the power is the choice
of a one sided or two sided alternative hypothesis. A one sided hypothesis gives a
higher power than a two sided hypothesis.

Power in software engineering experimentation is assessed and further discussed
by Dyba et al. [49].

10.3.2 Parametric and Non-parametric Tests

Tests can be classified into parametric tests and non-parametric tests. Parametric
tests are based on a model that involves a specific distribution. In most cases, it is
assumed that some of the parameters, involved in a parametric test, are normally
distributed. One test for normality is the Chi-2 test, which is further described
below when discussing the different types of test. Parametric tests also require that
parameters can be measured at least on an interval scale. If parameters cannot be
measured on at least an interval scale this means generally that parametric tests
cannot be used. In these cases there are a wide range of non-parametric tests
available.

Non-parametric tests do not make the same type of assumptions concerning the
distribution of parameters as parametric tests do. Only very general assumptions are
made to derive non-parametric tests. The binomial test, described in the previous
subsection is an example of a non-parametric test. Non-parametric tests are more
general than parametric tests. This means that non-parametric tests, if they are
available, can be used instead of parametric tests, but parametric tests cannot
generally be used when non-parametric tests can be used. With respect to the choice
of parametric or non-parametric test, there are two factors to consider:
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Applicability What are the assumptions made by the different tests? It is im-
portant that assumptions regarding distributions of parameters and
assumptions concerning scales are realistic.

Power The power of parametric tests is generally higher than for non-
parametric tests. Therefore, parametric tests require fewer data
points, and therefore smaller experiments, than non-parametric test
if the assumptions are true.

The choice between parametric and non-parametric statistical methods is also
discussed by Briand et al. [27]. There it is described that even if it is a risk using
parametric methods when the required conditions are not fulfilled, it is in some
cases worth taking that risk. Simulations have shown that parametric methods, such
as the t-test, described below, are fairly robust to deviations from the preconditions
(interval scale) as long as the deviations are not too large.

10.3.3 Overview of Tests

In addition to the binomial test introduced above, the following tests are described
in this section:

t-test One of the most often used parametric tests. The test is used to
compare two sample means. That is, the design is one factor with
two treatments.

Mann-Whitney This is a non-parametric alternative to the t-test.

F-test This is a parametric test that can be used to compare two sample
distributions.

Paired t-test A t-test for a paired comparison design.

Wilcoxon This is a non-parametric alternative to the paired t-test.

Sign test This is a non-parametric alternative to the paired t-test. The sign
test is a simpler alternative to the Wilcoxon test.

ANOVA (ANalysis Of VAriance). A family of parametric tests that can be

used for designs with more than two levels of a factor. ANOVA
tests can, for example, be used in the following designs: One
factor with more than two levels, one factor and blocking variable,
factorial design, and nested design.

Kruskal-Wallis ~ This is a non-parametric alternative to ANOVA in the case of one
factor with more than two treatments.

Chi-2 This is a family of non-parametric tests that can be used when
data are in the form of frequencies.

The different tests can be sorted with respect to design type and with respect to
whether they are parametric or non-parametric as in Table 10.3.

For all tests that are described, the following items are presented in separate
tables for each test:
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Table 10.3 Overview of parametric/non-parametric tests for different designs

Design Parametric Non-parametric

One factor, one treatment Chi-2, Binomial test

One factor, two treatments, completely t-test, F-test Mann-Whitney, Chi-2
randomized design

One factor, two treatments, paired comparison Paired t-test Wilcoxon, Sign test

One factor, more than two treatments ANOVA Kruskal-Wallis, Chi-2

More than one factor ANOVA“

“ This test is not described in this book. Refer instead to, for example, Marascuilo and Serlin [119]
and Montgomery [125]

Input The type of measurements needed to make the test applicable
describes the input to the test. That is, this describes what
requirements there are on the experiment design if the test should

be applicable.
Null hypothesis A formulation of the null-hypothesis is provided.
Calculations It describes what to calculate based on the measured data.
Criterion The criterion for rejecting the null hypothesis. This often involves

using statistical tables and it is described which table to use from
Appendix B. In this book tables are only provided for one level
of significance, but for many tests references are given to other
sources where more comprehensive tables are provided.

All tests are not described completely here. For more information concerning
the tests refer to the references given in the text. For example, the Mann-Whitney
test, the Wilcoxon test, the sign test and the Kruskal-Wallis test are described for
the most straightforward case with few samples. If there are many samples (for
example, more than about 35 for the sign test) it is in many cases hard to do
the calculations and decisions as described below. In these cases it is possible to
do certain approximations because there are so many samples. How to do this is
described by, for example, Siegel and Castellan [157]. They also described how to
do when ties (two or more equal values) occur for those tests.

The objective of the descriptions of the tests is that it should be possible to use
the tests based on the descriptions and the examples. The intention is not to provide
all details behind the derivations of the formulas.

Using the type of description outlined above, our simple example test, see
Sect. 10.3.1, is summarized in Table 10.4.

In the above table the Binomial test is described for the null hypothesis that the
two events are equally probable. It is possible to state other null hypotheses, such as
P(event 1) = 0.3 and P(event 2) = 0.7. For a description of how to perform the
test in those cases, see for example Siegel and Castellan [157].

For most of the tests in this chapter, examples of usage are presented. The
examples are based on fictitious data. Moreover, the tests are primarily presented
for a significance level of 5% for which tables are provided in Appendix B.
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Table 10.4 Binomial test

Item Description
Input Number of events counted for two different kind of events (event; and event,)
H, P(event 1) = P(event 2)

1 < (N
Calculations Calculate p = 2—N E ( . ) where N is the total number of events, and 7 is the
i
i=0

number of the most rare event
Criterion Two sided (H; : P(event 1) # P(event 2)): reject Hy if p < /2
One sided (H; : P(event 1) < P(event 2)): reject Hy if p < « and event 1 is the
most rare event in the sample

Table 10.5 t-test

Item Description
Input Two independent samples: x;, X»,...x, and y1, ¥2, ... Vm
H JLx = [4y,1i.e. the expected mean values are the same
X—7v (n—1S2+4+ (m—1)S2
Calculations Calculate 1, = R where S, = al Y and,
n+m-—2

Spi
S2 and S§ are the individual sample variances
Criterion Two sided (H : jux 7 ,): reject Hy if |to] > to/2n4-m—2. Here, t4 y is the upper
« percentage point of the t distribution with f* degrees of freedom, which is
equal to n + m — 2. The distribution is tabulated, for example, in Table B.1 and
by Montgomery [125], and Marascuilo and Serlin [119]
One sided (H : jux > wy): reject Ho if 1o > 1o n4m—2

More comprehensive tables are available in books on statistics, for example, by
Marascuilo and Serlin [119] and Montgomery [125].

10.3.4 t-Test

The t-test is a parametric test used to compare two independent samples. That
is, the design should be one factor with two levels. The t-test can be performed
based on a number of different assumptions, but here an often-used alternative is
described. For more information, refer for example to Montgomery [125], Siegel
and Castellan [157], and Marascuilo and Serlin [119]. The test is performed as
presented in Table 10.5.

Example of t-test. The defect densities in different programs have been compared
in two projects. In one of the projects the result is

x =342, 2.71, 2.84, 1.85, 3.22, 3.48, 2.68, 4.30, 2.49, 1.54




10.3 Hypothesis Testing 139

Table 10.6 Mann-Whitney

Item Description
Input Two independent samples: x;, x5, ...x, and y1, y2, ... Vm
H The two samples come from the same distribution

Calculations  Rank all samples and calculate U = N4Np + %AH) —Tand U’ = NyNg —
U, where Ny = min(n,m), Ng = max(n,m), and T is the sum of the ranks
of the smallest sample

Criterion Tables providing criterion for rejection of the null hypothesis based on the
calculations are provided, for example, in Table B.3 and by Marascuilo and
Serlin [119]

Reject Hy if min(U, U’) is less than or equal to the value in Table B.3

and in the other project the result is
y =3.44, 497, 476, 4.96, 4.10, 3.05, 4.09, 3.69, 4.21, 4.40, 3.49

The null hypothesis is that the defect density is the same in both projects, and the
alternative hypothesis that it is not. Based on the data it can be seen that n = 10 and
m = 11. The mean values are x = 2.853 and y = 4.1055.
It can be found that S2 = 0.6506, Sy2 =0.4112,S, = 0.7243 and 7y = —3.96.
The number of degrees of freedomis f =n+m—-2=10+11—-2=19.In
Table B.1, it can be seen that 7902519 = 2.093. Since |ty| > #9.025.19 it is possible to
reject the null hypothesis with a two tailed test at the 0.05 level.

10.3.5 Mann-Whitney

The Mann-Whitney test is a non-parametric alternative to the t-test. It is always
possible to use this test instead of the t-test if the assumptions made by the t-test
seem uncertain. The test, which is based on ranks, is not described completely
here. More details are presented by, for example, Siegel and Castellan [157]', and
Marascuilo and Serlin [119]. The test is summarized in Table 10.6.

Example of Mann-Whitney. When the same data is used, as in the example with the
t-test, it can be seen that N4 = min(10, 11) = 10 and N = max(10, 11) = 11. The
ranks of the smallest sample (x) are 9, 5, 6, 2, 8, 11,4, 17, 3, 1 and the ranks of the
largest sample (y) are 10, 21, 19, 20, 15, 7, 14, 13, 16, 18, 12. Based on the ranks it
can be found that 7 = 66, U = 99 and U’ = 11. Since the smallest of U and U’ is
smaller than 26, see Table B.3, it is possible to reject the null hypothesis with a two
tailed test at the 0.05 level.

ISiegel and Castellan [157] describe the Wilcoxon-Mann-Whitney test instead of the Mann-
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Table 10.7 F-test

Item Description
Input Two independent samples: x;, x5, ...x, and y1, y2, ... Vm
H, o= ayz, i.e. the variances are equal

max(S2, S2)

Calculations Calculate Fy, = m,

where S? and S are the individual sample

variances

Criterion Two sided (H, : o2 # ayz): reject Ho if Fo > Foyompex—1min—1> WHere npyqy
is the number of scores in the sample with maximum sample variance and
nyin is the number of scores in the sample with minimum sample variance.
Fu/2. 5.5 is the upper o percentage point of the F distribution with f; and
/> degrees of freedom, which is tabulated, for example, in Table B.5 and by
Montgomery [125], and Marascuilo and Serlin [119]

One sided (H, : 0} > o2): reject Hy if Fy > F, —ttpiy—1,and S7 > 2

o max

10.3.6 F-Test

The F-test is a parametric test that can be used to compare the variance of two
independent samples. More details about the test are presented by, for example,
Montgomery [125], Robson [144], and Marascuilo and Serlin [119]. The test is
performed as presented in Table 10.7.

Example of F-test. When the same data is used, as in the example with the t-test,
it can be found that Sy = 0.6506 and S, = 0.4112, which means that Fy = 1.58.
It can also be seen that n,,,c = 10 and n,,;;,, = 11.

From Table B.5 it can be seen that Fy 925910 = 3.78. Since Fy < Fp 259,10 it is
impossible to reject the null hypothesis with a two tailed test at the 0.05 level. That
is, the test does not reject that the two samples have the same variance.

10.3.7 Paired t-Test

The paired t-test is used when two samples resulting from repeated measures are
compared. This means that measurements are made with respect to, for example,
a subject more than once. An example of this is if two tools are compared.
If two groups independently use the two different tools, the result would be two
independent samples and the ordinary t-test could be applied. If instead only one
group would be used and every person used both tools, we would have repeated
measures. In this case the test examines the difference in performance for every
person with the different tools.

The test, which is described in more detail by, for example, Montgomery [125],
and Marascuilo and Serlin [119], is performed as presented in Table 10.8:

Example of paired t-test. Ten programmers have independently developed two
different programs. They have measured the effort that was required and the result
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Table 10.8 Paired t-test

Item Description
Input Paired samples: (xy, y1), (x2, ¥2) ... (X, ¥n)
H, na = 0, where d; = x; — y;, i.e. the expected mean of the differences is 0
d " (d; —d)?
Calculations  Calculate t) = —— =, where S; = Z’_l(—)
Sa/(y/n) n—1
Criterion Two sided (H; : pq # 0): reject Hy if |to| > to/24—1. Here, to s is the

upper « percentage point of the ¢ distribution with f degrees of freedom. The
distribution is tabulated, for example, in Table B.1 and by Montgomery [125],
and Marascuilo and Serlin [119]

One sided (H; : jtg > 0): reject Hy if |tg] > t4.0—1

Table 10.9 Required effort
Programmer 1 2 3 4 5 6 7 8 9 10

Program 1 105 137 124 111 151 150 168 159 104 102
Program 2 86.1 115 175 94.9 174 120 153 178 71.3 110

The null hypothesis is that the required effort to develop program 1 is the same
as the required effort to develop program 2. The alternative hypothesis is that it is
not. In order to carry out the test the following are calculated:

d ={18.9, 22, —51, 16.1, 23, 30,15, 19, 32.7, 9}

Sq = 27.358

to = 0.39

The number of degrees of freedomis f =n —1 = 10— 1 = 9. In Table B.1, it
can be seen that 7 0259 = 2.262.

Since 7y < 10259 it is impossible to reject the null hypothesis with a two sided
test at the 0.05 level.

10.3.8 Wilcoxon

The Wilcoxon test is a non-parametric alternative to the paired t-test. The only
requirements are that it is possible to determine which of the measures in a pair
is the greatest and that it is possible to rank the differences. The test, which is based
on ranks, is not described in detail here. A more detailed description is presented
by, for example, Siegel and Castellan [157], and Marascuilo and Serlin [119]. The
test is summarized in Table 10.10.

Example of Wilcoxon. When the same data is used, as in the example with the
paired t-test, it is found that the ranks of the absolute values of the difference (d)
are 4, 6, 10,3,7,8,2,5,9, 1. Based on this 7T and 7T~ can be calculated to be 32
and 23.

Since the smallest of 7 and 7~ is larger than 8 (see Table B.4) it is impossible
j is Wi iled test at the 0.05 level.




142 10 Analysis and Interpretation

Table 10.10 Wilcoxon

Item Description
Input Paired samples: (xy, y1), (x2, ¥2) ... (X, ¥n)
H, If all differences (d; = x; — y;) are ranked (1,2, 3...) without considering the

sign, then the sum of the ranks of the positive differences equals the sum of the
ranks of the negative differences

Calculations ~ Calculate Tt as the sum of the ranks of the positive d;:s and T~ as the sum of
the ranks of the negative d; :s

Criterion Tables that can be used to determine if H, can be rejected based on T+, T~ and
the number of pairs, n, are available. See for example Table B.4 or Siegel and
Castellan [157], and Marascuilo and Serlin [119]

Reject Hy if min(T+, T ™) is less than or equal to the value in Table B.4

Table 10.11 Sign test

Item Description
Input Paired samples: (xy, y1), (x2, ¥2) ... (Xn, Yn)
H, P(+) = P(—), where + and — represent the two events that x; > y; andx; < y;

Calculations ~ Represent every positive differences (d; = x; — y;) by a + and every negative
1 (N

difference by a —. Calculate p = — Z .|, where N is the total number
N =\

of signs, and n is number of signs of the most rare signs
Criterion Two sided (H; : P(+) # P(—)): reject Hy if p < /2
One sided (H; : P(4) < P(—)): reject Hy if p < « and the 4 event is the most
rare event in the sample

10.3.9 Sign Test

The sign test is, as the Wilcoxon test, a non-parametric alternative to the paired
t-test. The sign test can be used instead of the Wilcoxon test when it is not possible or
necessary to rank the differences, since it is only based on the sign of the difference
of the values in each pair. For example, it is not necessary to use Wilcoxon when it
is possible to show significance with the sign test. This is due to that the sign test
has a lower power. Moreover, the sign test is easier to perform.

The test is further described by, for example, Siegel and Castellan [157] and
Robson [144], and is summarized in Table 10.11.

The reader may recognize that this test is a binomial test where the two events
are 4 and — respectively.

Example of sign test. When the same data is used, as in the example with the paired
t-test, it is found that there are 6 positive differences and 4 negative. This means that

4
1 10\ 193

- = 2> ~ 03770
P =310 ; (i ) 512

Since p > 0.025 it is impossible to reject the null hypothesis with a two tailed

oLl Z'yl_ilsl
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Table 10.12 ANOVA, one factor, more than two treatments

Item Description
Input a samples: X115 X125+« « X1nys X215 X225 « « - X2np 5« -+ 5 Xal» Xa2s - - - Xan,
Hy My, = My, = ... = [Ly,,1.e. all expected means are equal

2o

ni 2
. _ 2 X
Calculations — SSt = Z Z xX;— N
i=1j=1
a2 2
X7 X
SS reatment — = -
o = 3% =
SSErmr = SST - SSTreatment
MSTreatmem‘ = SSTreatment/ (a - 1)
MSEror = SSError/(N - (1)
FO = MSTreatment/MSErmr
where N is the total number of measurements and a dot index denotes a
summation over the dotted index, e.g. x; = Z Xjj
J
Criterion Reject Hy if Fy > Fyu—1,n—q- Here, Fy s 5 is the upper o percentage point
of the F distribution with f; and f; degrees of freedom, which is tabulated,
for example, in Table B.5 and by Montgomery [125] and Marascuilo and
Serlin [119]

Table 10.13 ANOVA table for the ANOVA test described above

Source of variation Sum of Degrees of Mean square F
squares freedom
MS
Between treatments SS Treatment a—1 MS Treatment Fy= Lo Treatment
MSError
Error® SSError N —a MSEg,ror
Total SSr N-—1

¢ This is sometimes denoted within treatments

10.3.10 ANOVA (ANalysis Of VAriance)

Analysis of variance can be used to analyze experiments from a number of different
designs. The name, analysis of variance, is used because the method is based on
looking at the total variability of the data and the variability partition according to
different components. In its simplest form the test compares the variability due to
treatment and the variability due to random error.

In this section, it is described how to use ANOVA in its simplest form. The test
can be used to compare if a number of samples has the same mean value. That is,
the design is one factor with more than two treatments. The test is summarized in
Table 10.12.

The results of an ANOVA test are often summarized in an ANOVA table. The
results of a test for one factor with multiple levels can, for example, be summarized
as in Table 10.13.

Notice that the described ANOVA test is just one variant of ANOVA tests.
ANOVA tests can be used for a number of different designs, involving many
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Table 10.14 ANOVA table

Source of variation Sum of squares Degrees of freedom Mean square Iy
Between treatments 579.0515 2 289.5258 0.24
Error 36,151 30 1,205

Total 36,730 32

Table 10.15 Kruskal-Wallis

Item Description
Input a samples: X115 X125+« « X1nys X215 X225 « « - X2np 5« - - 5 Xal» Xa2s - - - Xan,
H The population medians of the a samples are equal.

Calculations  All measures are ranked in one series (1,2,...n; + n, 4+ ... + n,), and the
calculations are based on these ranks. See for example [119, 157].
Criterion See, for example, Siegel and Castellan [157] and Marascuilo and Serlin [119]

different factors, blocking variables, etc. It would lead too far to describe these tests
in detail here. Refer instead to, for example, Montgomery [125], and Marascuilo
and Serling [119].

Example of ANOVA. The module sizes in three different programs have been
measured. The result is:

Program 1: 221, 159, 191, 194, 156, 238, 220, 197, 197, 194
Program 2: 173, 171, 168, 286, 206, 140, 226, 248, 189, 208, 213
Program 3: 234, 188, 181, 207, 266, 153, 190, 195, 181, 238, 191, 260

The null hypothesis is that the mean module size is the same in all three
programs. The alternative hypothesis is that it is not. Based on the data above the
ANOVA table in Table 10.14 can be calculated.

The number of degrees of freedom are fi=a —1=3—-1=2and =N —
a =33 — 3 =30. In Table B.5, it can be seen that F{ 5230 = 4.18. Since Fy <
F9.025.2 30 it is impossible to reject the null hypothesis at the 0.025 level.

10.3.11 Kruskal-Wallis

The Kruskal-Wallis one way analysis of variance by ranks is a non-parametric
alternative to the parametric one factor analysis of variance described above. This
test can always be used instead of the parametric ANOVA if it is not sure that the
assumptions of ANOVA are met. The test, which is based on ranks, is not described
in detail here. More details are presented by, for example, Siegel and Castellan [157]
and Marascuilo and Serlin [119].

The test is summarized in Table 10.15.
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Table 10.16 Frequency table

for module size (variables) of Module size System 1 System 2
two systems (groups) small 15 10
medium 20 19
large 25 28

10.3.12 Chi-2

Chi-2 (sometimes denoted y?) tests can be performed in a number of different ways.
All Chi-2 tests are, however, based on that data is in the form of frequencies. An
example of frequencies for two systems with a number of modules can be that for
system 1 there are 15 small modules, 20 medium modules and 25 large modules,
while for system 2 there are 10 small modules, 19 medium modules and 28 large
modules. This is summarized in Table 10.16.

In this case a Chi-2 test could be performed to investigate if the distribution of
small, medium and large modules are the same for the two systems.

Chi-2 tests can also be performed with one group of data, in order to see, if one
measured frequency distribution is the same as a theoretical distribution. This test
can, for example, be performed in order to check if samples can be seen as normally
distributed.

In Table 10.17, a Chi-2 test is summarized, which can be used to compare if
measurements from two or more groups come from the same distribution.

Example of Chi-2 test. If a Chi-2 test is performed on the data in Table 10.16 then
Table 10.18 can be constructed.

The null hypothesis is that the size distribution is the same in both systems, and
the alternative hypothesis is that the distributions are different. Based on the data
the test statistic can be calculated to X, = 1.12. The number of degrees of freedom
is (r—1)(k—1) = 2% 1 = 2. In Table B.2, it can be seen that )((2)_05,2 = 5.99. Since

X? < )((2)'05!2 it is impossible to reject the null hypothesis at the 0.05 level.

Chi-2 Goodness of fit test. A Chi-2 test can also be carried out in order to check
if measurements are taken from a certain distribution, e.g., the normal distribution.
In this case a goodness of fit test is performed according to Table 10.19

If the goodness of fit test is performed for a continuous distribution, the possible
values that can be measured must be divided into intervals so that each interval can
represent one value. This must, for example, be done for the normal distribution.

If the distribution of Hj is completely specified (for example, P(X = 1) =
2/3, P(X = 2) = 1/3) then no parameters must be estimated from the measured
data (i.e. ¢ = 0). On the other hand, for example, if the null hypothesis only specifies
that the values comply with a normal distribution, two parameters must be estimated.
Both the mean value and the standard deviation of the normal distribution must
be estimated, otherwise it is not possible to determine the values of the different
expected values, E;, for the intervals. Therefore, in this case, e = 2.
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Table 10.17 Chi-2, k independent samples (groups)

Item Description
Input Data as frequencies for k groups
H Measurements from the k groups are from the same distribution

Calculations ~ Create a contingency table. An example of a contingency table for two groups
and three variables (i.e., the same dimensions as the data in Table 10.16) can be
constructed as:

Variable Groupl Group2 Combined

1 niy np R,
2 na ny R,
3 n3y n3 R;
Total C C, N

In this table n;; denotes the frequency for variable i and group j, C; denotes the
sum of the frequencies for group i and R; denotes the sum for variable i. N is
the sum of all frequencies

(nj — Ey)’* R;C;
Compute X*> = ~— % Where E;; = — (the expected frequenc
P ;; = (theexp quency
if Hy is true), r is the number of variables and k is the number of groups
Criterion Reject Hy if X2 > Xi, > Where f is the number of degrees of freedom determined
as f=(r—1)k —1). )(i, s is the upper & percentage point of the Chi-2
distribution with f degrees of freedom, which is tabulated, for example, in
Table B.2 and by Siegel and Castellan [157]

Table 10.18 Calculations for Chi-2 test (Expected values, Ej;, are displayed in parenthesis)

Module size System 1 System 2 Combined
small 15 (12.8205) 10 (12.1795) Ry =25
medium 20 (20) 19 (19) R, =39
large 25 (27.1795) 28 (25.8205) Ry =53
Total C, =60 C, =57 N =117

Example: Chi-2 Goodness of fit test for normal distribution. 60 students have
developed the same program and the measured size is displayed in Table 10.20.

The null hypothesis is that the data is normally distributed, and the alternative
hypothesis that it is not. Based on the data, the mean and the standard deviation can
be estimated: x = 794.9833, and s = 83.9751.

The range can be divided into segments which have the same probability of
including a value if the data actually is normally distributed with mean x and
standard deviation s. In this example the range is divided into ten segments. In order
to find the upper limit (x) of the first segment the following equation should be
solved:

P(X < x) = 1/10 where X is N(X, s), which in terms of the standard normal
distribution corresponds to

P(X; <(x—X)/s) = 1/10 where X; is N(0, 1), which is the same as

/10 where X is N(0, 1) and x = sz+ X.
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Table 10.19 Chi-2, goodness of fit

Item Description
Input Data as frequencies for one group (i.e., Oy, O, ... O,, where O; represents the
number of observations in category i ). Compare with Table 10.2
H, Measurements are from a certain distribution
~ (0 — E1)?
Calculations ~ Compute X2 = Z ’TI where E; is the expected number of observa-
i=1 i
tions in category 7 if Hj is true and 7 is the number of categories
Criterion Reject Hy if X, > )(i, s> where f is the number of degrees of freedom determined

as f = n —e —1, and e is the number of parameters that must be estimated
from the original data (see below). Xﬁ, + 1s the upper o percentage point of the
Chi-2 distribution with f degrees of freedom, which is tabulated, for example,
in Table B.2 and by Siegel and Castellan [157]. This is a one sided test

Table 10.20 Measured size

757 758 892 734 800 979 938 866 690 877 773 778
679 888 799 811 657 750 891 724 775 810 940 854
784 843 867 743 816 813 618 715 706 906 679 845
708 855 777 660 870 843 790 741 766 677 801 850
821 877 713 680 667 752 875 811 999 808 771 832

Table 10.21 Segments

Segment Lower boundary Upper boundary Number of values
1 687.3 8
2 687.3 724.3 6
3 724.3 750.9 4
4 750.9 773.7 6
5 773.7 795 5
6 795 816.3 9
7 816.3 839 2
8 839 865.7 6
9 865.7 902.6 9
10 902.6 5

These equations can be solved in a number of different ways. One way is to
iterate and use a computer to help find z or x. Another way is to use a table of the
standard normal distribution (which shows P(X; < z) for different values of z).
This type of table is available in most books on statistics. It is also possible to use a
specialized table that directly shows the limit values for the segments, i.e. the values
of z. This type of table is presented by Humphrey [82].

The resulting segment boundaries and the number of values that fall into each
segment are shown in Table 10.21.

The expected number of values (E;) in each segment is 60/10 = 6. This means
that X, = 7.3. The number of degrees of freedom is 10 —2 —1 = 7. In Table B.2,
it can be seen that )(0 05 , = 14.07. Since X% < )(0 05 1t is impossible to reject the

h 0 ook at a histogram, see Fig. 10.10, of the
ormally distributed.
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Fig. 10.10 Histogram 12

10

Number of values

1 2 3 4 5 6 7 8 9 10

Chi-2 test final remarks. The Chi-2 test is based on certain assumptions, which
are likely to be fulfilled if the expected values, E;, are not too small. A rule of thumb
is, if the number of degrees of freedom ( f') is equal to 1, the Chi-2 test should not be
used if any of the expected frequencies are less than 5. If f > 1 the Chi-2 test should
not be used if more than 20% of the expected frequencies are less than 5 or any of
them is less than 1. It should be observed that sometimes the test is used although
the expected frequencies are not fulfilled. In these cases, this is a calculated risk.
One way to obtain larger expected frequencies is to combine related categories to
new categories. However, the new categories must be meaningful. For more infor-
mation concerning the Chi-2 test refer, for example, to Siegel and Castellan [157].

10.3.13 Model Adequacy Checking

Every statistical model is relying on specific assumption regarding, for example,
distribution, independence and scales. If the assumptions are invalidated by the data
set, the results of the hypothesis testing are invalid. Hence, it is crucial to check that
all assumptions are fulfilled.

The checking of model adequacy is made depending on the assumptions. Below
we describe three cases:

Normality If a test assumes that the data is normally distributed, a Chi-2 test
can be made to assess to which degree the assumption is fulfilled.
The Chi-2 test is described above.

Independence If the test assumes that the data is a sample from several indepen-
dent stochastic variables, it is necessary to check that there is no
correlation between the sample sets. This may be checked with
scatter plots and by calculating correlation coefficients as discussed
in the beginning of this section.

Residuals In many statistical models, there is a term that represents the

esi isti error). It is often assumed that the residuals
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are normally distributed. A common way to check this property is
to plot the residuals in a scatter plot and see that there is no specific
trends in the data (the distribution looks random).

10.3.14 Drawing Conclusions

When the experiment data has been analyzed and interpreted, we need to draw
conclusions regarding the outcome of the experiment. If the hypotheses are rejected
we may draw conclusions regarding the influence of the independent variables on
the dependent variables, given that the experiment is valid, see Chap. 8.

If, on the other hand, the experiment cannot reject the null hypothesis, we cannot
draw any conclusions on the independent variables influence on the dependent
variable. The only thing we have shown, in this case, is that there is no statistically
significant difference between the treatments.

If we have found statistically significant differences, we want to make general
conclusions about the relation between independent and dependent variables. Before
this can be done we need to consider the external validity of the experiment, see
Chap. 8. We can only generalize the result to environments that are similar to the
experimental setting.

Although the result of the experiment may be statistically significant, it is not
necessarily that the result is of any practical importance. Assume, for example, that
method X was shown with a high statistical significance to be 2% more cost effective
than method Y, although there is a high statistical significance, the improvement of
changing from method Y to method X might not be cost effective. That is, it is
necessary to study the observed effect size of different treatments and based on
that draw conclusions and present recommendations. Kampenes et al. [92] give an
overview of different effect size concepts and present a systematic review on how
this is handled in published articles.

It may also be vice versa; although the experiment results may not be statistically
significant or have a low statistical significance, the lessons learned from the
experiment may still be of practical importance. The fact that a null hypothesis
cannot be rejected with a certain level of significance does not mean that the null
hypothesis is true. There may be problems with the design of the experiment, such
as real threats to validity or too few data samples. Furthermore, depending on the
situation and objective of the study, we may settle for a lower statistical significance
since the results are of high practical importance. This issue is also related to the
discussion regarding threats to the validity, see Sect. 8.9.

When finding a significant correlation between a variable A and a variable B, we
cannot, in general, draw the conclusion that there is a causal relation between A and
B. There may be a third factor C, that causes the measurable effects on A and B.

The conclusions drawn based on the outcome of the experiment, are input to a
decision, e.g. that a new method will be applied in future projects, or that further
experimentation is needed.
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It should be noted that there are drawbacks of using hypothesis testing too. As
Miller [122] points out, most null hypotheses are formulated in a way that they
always will be rejected, if enough data points are provided, and it is not possible to
actually obtain a sample that is representative of the whole population, for example,
of all software engineers in the world. Care should always be taken when actions
are taken based on the results of an experiment, and the experiment result should be
seen as one factor in the decision process.

10.4 Example Analysis

The example is a continuation of the example in Sect. 9.4. Based on the experiment
data from the execution, the first step is to apply descriptive statistics, i.e. to plot the
data. Appropriate statistical methods should be used in relation to the measurement
scales, as described in Sect. 10.1. A commonly used way to plot data is to use box
plots. They provide an excellent opportunity to get an overview of the data and
to identify outliers. If identifying an outlier, it is important to understand whether
there is some underlying explanation. For example, it may be the case that one
or a few subjects have a very different background than the others, and hence it
must be ensured that their data is comparable to the data from the other subjects.
It may be particularly critical if only one of the groups is affected. In general, we
should be restrictive in removing data points, i.e. any removal of data should be well
motivated and documented.

Once it is decided which data to include in the data analysis, it is time to take
a look at the statistical analysis. The statistical analysis is always a challenge, and
there are many different opinions about the use of different statistical methods and
when to use parametric and non-parametric methods.

The first step is to check if the data is normally distributed, for example
by plotting a histogram (Fig.10.5) or by using the Chi-2 test as described in
Sect. 10.3.12 or by using other alternative tests such as for example the so-called
Kolmogorov—Smirnov test, the Shapiro—-Wilks” W test, or the Anderson—Darling
test. However with a small sample size, the data may look normally distributed
without actually being normally distributed and normality tests may not detect it
due to having few data points. Some parametric tests are more robust than others
against deviations from normality. For example, the t-test is quite robust for non-
normality, which is not the case for the ANOVA. Independently, it may be good to
investigate whether the data is normally distributed.

Given the two-factor design (reading technique and requirements document) with
two treatments each, there is a great need for the data to be normally distributed.
If the data is normally distributed then it is possible to use an ANOVA. If the data
is not normally distributed then there is a problem, since there is no non-parametric
counterpart for this type of design as is illustrated in Table 10.3; if having only one
factor with two treatments then there are non-parametric alternatives. Thus, even if
there are simpler designs, the chosen design seemed quite straightforward and it is
tempting to use it. However, it may not be a good choice to use this type of design.
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It generates more data points, but it does result in some challenges when coming to
the statistical analysis. Thus, it is important to be aware of the consequences in terms
of analysis when selecting the experiment design. This type of design is sometimes
referred to as being a crossover design, i.e. first subjects use or are exposed to one
treatment and then they are exposed to a second treatment. Some of the challenges
would be addressed if it was possible to only have one factor, i.e. the reading
technique. However, it is not realistic to use the same requirements document for
two inspections unless there is a long time between the two runs. Kitchenham
et al. [99] present some statistical challenges related to crossover design. Having
said that, crossover designs are not uncommon in software engineering since it
is a trade-off between the statistical challenges and having (too) few subjects
assigned to each treatment, although others argue that crossover designs cannot be
recommended in software engineering [99].

If assuming that the data is normally distributed, then an ANOVA test can be
applied. However, a challenge is that if the ANOVA shows a significant result, it
is still not known which difference is significant. To do this some additional test
has to be used after the ANOVA, for example, Fisher’s Protected Least Significant
Difference (PLSD) test [125]. The test requires a significant ANOVA to be used, i.e.
it is protected by a significant ANOVA. Fisher’s PLSD is used to make a pairwise
comparison of the means. Once again it illustrates some of the statistical challenges
that comes as a direct consequence of the experiment design. Thus, there is a need to
have quite simple experiment designs to be able to make a correct statistical analysis.

If we would have chosen to divide the subjects into two groups and then assigned
them to use either PBR or CBR on one and the same requirements document,
we would only have one factor with two treatments. This means that a t-test or
Mann-Whitney test could have been used depending on the outcome of the test
for normality. On the other hand, we would have no indication of the interaction
between subject and treatment. Whether this is better or worse than other alternative
designs has to be decided in each individual case depending on the number of
subjects and the validity threats identified.

10.5 Exercises

10.1. What is descriptive statistics and what is it used for?

10.2. What is a parametric and non-parametric test respectively, and when can they
be applied?

10.3. What is the power of a test?
10.4. What is a paired comparison?

10.5. Explain the ANOVA test briefly.



Chapter 11
Presentation and Package

When an experiment is completed, the findings may be presented for different
audiences, as defined in Fig. 11.1. This could, for example, be done in a paper for
a conference or a journal, a report for decision-makers, a package for replication
of the experiment, or as educational material. The packaging could also be done
within companies to improve and understand different processes. In this case, it is
appropriate to store the experiences in an experience base according to the concepts
discussed by Basili et al. [16]. However, here we focus on the academic reporting
in journals and conferences. If space limitations prevent complete reporting of all
details, we encourage a technical report be published in parallel.

Jedlitschka and Pfahl propose a scheme for the academic reporting of experi-
ments [86] which was later evaluated by Kitchenham et al. [101]. Jedlitschka and
Pfahl’s proposal is summarized in Table 11.1 and briefly elaborated in Sect. 11.1.

11.1 Experiment Report Structure

Structured abstract. The abstract should give the reader a quick summary of
the key characteristics of the experiment. Structured abstracts are empirically
demonstrated to be efficient tools to aid extraction of data [30] as well as writing
good abstracts [31]. The elements of a structured abstract are:

e Background or Context,
e Objectives or Aims,

¢ Method,

e Results, and

¢ Conclusions

Example. An example of a structured abstract is presented to illustrate the items. In
this case, the length of the structured abstract is limited to 300 words:

Context: Throughout an organization, people have different responsibilities and
erent roles have different priorities when
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Table 11.1 Proposed reporting structure for experiment reports, by Jedlitschka and Pfahl [86]

Sections/subsections

Contents

Title, authorship
Structured abstract

Motivation

Problem statement
Research objectives
Context
Related work
Experimental design
Goals, hypotheses and
variables
Design
Subjects
Objects
Instrumentation
Data collection
procedure
Analysis procedure
Evaluation of validity

Execution
Sample
Preparation
Data collection
performed
Validity procedure
Analysis
Descriptive statistics
Data set reduction
Hypothesis testing

Interpretation
Evaluation of results
and implications
Limitations of study
Inferences
Lesson learnt

Conclusions and
future work
Relation to existing
evidence
Impact
Limitations

Future work
Acknowledgements
References
Appendices

Summarizes the paper under headings of background or context,
objectives or aims, method, results, and conclusions

Sets the scope of the work and encourages readers to read the rest of the
paper

Reports what the problem is; where it occurs, and who observes it

Defines the experiment using the formalized style used in GQM

Reports environmental factors such as settings and locations

How current study relates to other research

Describes the outcome of the experimental planning stage

Presents the refined research objectives

Define the type of experimental design

Defines the methods used for subject sampling and group allocation
Defines what experimental objects were used

Defines any guidelines and measurement instruments used

Defines the experimental schedule, timing and data collection procedures

Specifies the mathematical analysis model to be used

Describes the validity of materials, procedures to ensure participants
keep to the experimental method, and methods to ensure the
reliability and validity of data collection methods and tools

Describes how the experimental plan was implemented

Description of the sample characteristics

How the experimental groups were formed and trained

How data collection took place and any deviations from plan

How the validity process was followed and any deviation from plan

Summarizes the collected data and describes how it was analyzed

Presentation of the data using descriptive statistics

Describes any reduction of the data set e.g. removal of outliers

Describes how the data was evaluated and how the analysis model was
validated

Interprets the findings from the Analysis section

Explains the results

Discusses threats to validity

How the results generalize given the findings and limitations

Descriptions of what went well and what did not during the course of
the experiment

Presents a summary of the study

Describes the contribution of the study in the context of earlier
experiments

Identifies the most important findings

Identifies main limitations of approach i.e. circumstances when the
expected benefits will not be delivered

Suggestions for other experiments to further investigate

Identifies any contributors who do not fulfill authorship criteria

Lists all cited literature

Includes raw data and/or detailed analyses which might help others to
use the results
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Experiment presentation
and package

( Experiment  } > Write report »( Experiment
( report )

Fig. 11.1 Overview of presentation and package

it comes to what should be improved within a company. This has been found in
previous studies in marketing, but is this true for software improvement as well?
Objective: This paper evaluates how different roles in a software development
organization view different issues in software process improvement and if such
differences could be used in order to provide more tailor-made process improve-
ments within an organization and uses this as a working hypothesis. Method:
A quantitative questionnaire containing five different weighted questions related
to software process improvement was developed. Eighty-four employees from all
levels of a Swedish telecommunication company were then approached, of which 63
responded. Results: The different roles disagreed in three of the questions while they
agreed in two of the questions. The disagreement was related to issues about impor-
tance of improvement, urgency of problems, and threat against successful process
management, while the questions where the roles agreed focused on communication
of the processes (documentation and teaching). Conclusion: It is concluded that
it is important to be aware and take into account the different needs of different
roles. This will make it possible to provide improvements tailored to specific roles
which will probably help to overcome resistance to process improvements. It is also
important to look into other areas and companies (for example, marketing) where it
could be beneficial when conducting process improvements.

Motivation. The motivation or introduction set the scope and defines the objective
of the research, hence it primarily reports the outcome of the scoping phase (see
Chap. 7). Information about the intent of the work can also be included to clarify
and capture the readers’ interest. This provides the reader with an understanding of
why the research has been carried out and why there is a need for it. The context in
which the experiment is conducted should be briefly presented here.

Related work. Related work is important to provide a picture of how the current
experiment is related to work conducted previously. Every experiment report does
not need a complete systematic literature review (see Chap.4), although being
systematic in searching for literature is mostly beneficial. In particular, in the case
of replication studies, all previous studies should be reported.

Experimental design. Here, the outcome of the planning phase is reported, see
Chap. 8. The hypotheses, which are derived from the problem statement, are
described in detail. The experimental design is presented, including the design
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type, variables measured, both the independent and the dependent, as well as the
instrumentation.

A description of how the data will be collected and analyzed should be included.
A characterization of the subjects should be provided. The discussion about the
experiment’s conclusion, internal, construct and external validity should be provided
here together with the possible threats against the plans.

The purpose for describing these items is to enable other persons to both
understand the design so that it is visible to the reader that the results are trustworthy
and to enable replication of the study. In short, it should help the reader to get deeper
a understanding of what has been done.

Execution. The first part to describe is how the operation is prepared, see Chap. 9.
It is important to include descriptions of aspects that will ease replication of the
experiment and to give insight into how activities have been carried out. The
preparation of the subjects has to be presented. Information such as whether
they attended some lessons or not is important to provide. The execution of
the experiment should also be presented and how data was collected during the
experiment.

Validation procedures of the data collection are another issue that has to be
stressed and it has to be reported if sidesteps have been taken from the plans. All
information is aimed to provide a case for the validity of the data and to highlight
problems.

Analysis. A presentation of the data analysis, where the calculations are described
together with the assumptions for using some specific analysis model, should be
provided. Information about sample sizes, significance levels and application of tests
must also be included so that the reader will know the prerequisites for the analysis.
The reasons for the actions taken, for example outlier removal, should be described
to avoid misunderstandings in the interpretation of the results. For more information
see Chap. 10.

Interpretation. Raw results from the analysis are not enough to provide an
understanding of the results and conclusions from the experiment. An interpretation
must also be provided, see Chap. 10. It includes the rejection of the hypothesis or
the inability to reject the null hypothesis. The interpretation summarizes how the
results from the experiment may be used.

The interpretation should be done with references to validity, see Chap. 8. Factors
that might have had an impact on the results should be described.

Conclusions and further work. Finally, the discussions about the findings and the
conclusions are presented as a summary of the whole experiment together with the
outcomes, problems, deviations from the plans and so forth. The results should also
be related to work reported previously. It is important to address similarities and
differences in the findings.
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Ideas for future work might also be included in this section and information about
where more information can be found to get a deeper insight to the experiment and
to ease replication of the experiment.

Appendices. Information that is not vital for the presentation could be included in
appendices. This could, for example, be the collected data and more information
about the subjects and objects. If the intention is to produce a lab package, the
material used in the experiment could be provided here.

11.2 Exercises

11.1. Why is it important to document an experiment thoroughly?
11.2. What is a lab package? Can you find any lab packages on the Internet?
11.3. Why is it important to report related work?

11.4. Why is it not enough just to provide the results from the analysis? In other
words, why is a special interpretation of the results important?

11.5. Which in information in the report is most important when conducting a
systematic literature review? When replicating an experiment?
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Chapter 12
Experiment Process Illustration

The primary objective of the presentation of this experiment is to illustrate
experimentation and the steps in the experiment process introduced in the previous
chapters. The presentation of the experiment in this chapter is focused on the
experiment process rather than following the proposed report structure in Chap. 11.

The objective of the presented experiment is to investigate the performance
in using the Personal Software Process (PSP) [82, 83] based on the individual
background of the people taking the PSP course. The experiment, as reported here,
is part of a larger investigation of the individual differences in performance within
the PSP. Since “individual background” cannot be randomly assigned to subjects,
the experiment is in fact a quasi-experiment.

The PSP is an individual process for a systematic approach to software devel-
opment. The process includes, for example, measurement, estimation, planning and
tracking. Furthermore, reuse is a key issue, and in particular the reuse of individual
experiences and data. The PSP course introduces the process in seven incremental
steps adding new features to the process using templates, forms and process scripts.

For the sake of simplicity, only two hypotheses are evaluated here. The data set
for the larger study can be found in Appendix A.1.2. The experiment presented in
this chapter uses a subset of the data.

12.1 Scoping

12.1.1 Goal Definition

The first step is to decide whether an experiment is a suitable way to analyze the
problem at hand. In this particular case, the objective of the empirical study is to
determine the differences in individual performance for people using the PSP given
their background.

ineering, 161
Verlag Berlin Heidelberg 2012



162 12 Experiment Process Illustration

The experiment is motivated by a need to understand the differences in individual
performance within the PSP. It is well known, and accepted, that software engineers
perform differently. One objective of introducing a personal process is to provide
support for the individuals to improve their performance. In order to support
improvement in the best possible way, it is important to understand what differences
still can be expected within the PSP and if it is possible to explain and thus
understand the individual differences.

Object of study. The object of study is the participants in the Personal Software
Process (PSP) course and their ability in terms of performance based on their
background and experience. Humphrey defines the Personal Software Process in
his two books on the subject [82, 83].

Purpose. The purpose of the experiment is to evaluate the individual performance
based on the background of the people taking the PSP course. The experiment
provides insight in to what can be expect in terms of individual performance when
using the PSP.

Perspective. The perspective is from the point of view of the researchers and
teachers, i.e. the researcher or teacher would like to know if there is any systematic
differences in the performance in the course based on the background of the
individuals entering the PSP course. This also includes people who may want to
take the course in the future or to introduce the PSP in industry.

Quality focus. The main effect studied in the experiment is the individual per-
formance in the PSP course. Here, two specific aspects are emphasized. The
choice is to focus on Productivity (KLOC/development time) and Defect density
(faults/KLOC), where KLOC stands for thousands of lines of code.

Context. The experiment is run within the context of the PSP. Moreover, the exper-
iment is conducted within a PSP course given at the Department of Communication
Systems, Lund University in Sweden. This study is from the course given in 1996—
1997, and the main difference from the PSP as presented by Humphrey [82] is that
it was decided to use a coding standard and a line counting standard. Moreover,
the course was run with C as a mandatory programming language independently
of the background of the students. The experimental context characterization is
“multi-test within object study”, see Table 7.1. The study is focused on the PSP
or more specifically the ten programs in Humphrey’s book [82] denoted 1A—10A.
The PSP course is taken by a large number of individuals (this particular year,
65 students finished the course). Thus, 65 subjects are included in the study, see
Sect.7.1. Thus, from this definition the study can be judged as being a controlled
experiment. The lack of randomization of students, i.e. the students signed up for the
course, means however that the study still lacks one important ingredient to make it
fully into a controlled experiment. This is hence classified as a quasi-experiment, see
Sect.7.1.
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12.1.2 Summary of Scoping

The summary is made according to Sect. 7.2.

Analyze the outcome of the PSP

for the purpose of evaluation

with respect to the background of the individuals
from the point of view of the researchers and teachers
in the context of the PSP course.

12.2 Planning

12.2.1 Context Selection

The context of the experiment is a PSP course at the university, and hence the exper-
iment is run off-line (not in an industrial software development), it is conducted by
graduate students (normally students in their fourth year at the university), and the
experiment is specific since it is focused on the PSP in an educational environment.
The ability to generalize from this specific context is further elaborated below when
discussing threats to the validity in the experiment. The experiment addresses a real
problem, i.e. the differences in individual performance and the understanding of the
differences.

The use of the PSP as an experimental context provides other researchers with
excellent opportunities to replicate the experiment as it is well defined. Furthermore,
it means that there is no need to spend much effort in setting up the experiment
in terms of defining and creating the environment in which the experiment is run.
Humphrey [82] defines the experimental context, and hence there is no need to
prepare forms for data collection and so forth.

12.2.2 Hypothesis Formulation

An important aspect of experiments is to know and to formally state clearly what is
going to be evaluated in the experiment. This leads to the formulation of a hypothesis
(or several hypotheses). Here, it has been chosen to focus on two hypotheses.
Informally, they are:

1. Students both from the Computer Science and Engineering program and the
Electrical Engineering program have taken the course. The students from the
Computer Science and Engineering program normally have taken more courses
in computer science and software engineering, and hence it is expected that




164 12 Experiment Process Illustration

they have a higher productivity than students from the Electrical Engineering
program.

2. As part of the first lecture, the students were asked to fill out a survey regarding
their background in terms of experiences from issues related to the course,
see Table A.1. This can be exemplified with, for example, knowledge in C.
The students were required to use C in the course independently of their prior
experience of the language. Thus, it was not required that the students had taken
a C-course prior to entering the PSP course, which meant that some students
learned C within the PSP course. This is not according to the recommendation
by Humphrey [82]. The hypothesis based on the C experience is that students
with more experience in C make fewer faults per lines of code.

Based on this informal statement of the hypotheses, it is now possible to state
them formally and also to define what measures that are needed to evaluate the
hypotheses.

1. Null hypothesis, Hy: There is no difference in productivity (measured as lines of
code per total development time) between students from the Computer Science
and Engineering program (CSE) and the Electrical Engineering program (EE).
Hy: Prod(CSE) = Prod(EE)

Alternative hypothesis, H;: Prod(CSE) # Prod(EE)
Measures needed: student program (CSE or EE) and productivity (LOC/hour).

2. Null hypothesis, Hy: There is no difference between the students in terms of
number of faults per KLOC (1,000 lines of code) based on the prior knowledge
in C.

Hj: Number of faults per KLOC is independent of C experience.

Alternative hypothesis, H;: Number of faults per KLOC changes with C
experience.

Measures needed: C experience and Faults/KLOC.

The hypotheses mean that the following data needs to be collected:

* Student program: measured by CSE or EE (nominal scale)

* Productivity is measured as LOC/Development time. Thus, program size has to
be measured (lines of code according to the coding standard and the counting
standard) and development time (minutes spent developing the program). The
development time is translated to hours when the productivity is calculated.
It should be noted that it was chosen to study the total program size (the sum
of the ten programming assignments) and the development time for all ten
programs. Thus, the individual assignments are not studied.

Lines of code are measured by counting the lines of code using a line counter
program (ratio scale). The lines counted are new and changed lines of code.
Development time is measured in minutes (ratio scale).

Productivity is hence measured on a ratio scale.

» C experience is measured by introducing a classification into four classes based
on prior experience of C (ordinal scale). The classes are:
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1. No prior experience.

2. Read a book or followed a course.

3. Some industrial experience (less than 6 months).
4. Industrial experience (more than 6 months).

The experience in C is hence measured on an ordinal scale.
e Faults/KLOC is measured as of the number of faults divided by the number of
lines of code.

The hypotheses and measures put constraints on the type of statistical test to use,
at least formally. The measurement scales formally determine the application of
specific statistical methods, but we may want to relax these requirements for other
reasons. This issue is further discussed below, when discussing the actual type of
design in the experiment.

12.2.3 Variables Selection

The independent variables are student program and experience in C. The dependent
variables are productivity and faults/KLOC.

12.2.4 Selection of Subjects

The subjects are chosen based on convenience, i.e. the subjects are students taking
the PSP course. The students are a sample from all students at the two programs,
but not a random sample.

12.2.5 Experiment Design

The problem has been stated, and the independent and dependent variables have
been chosen. Furthermore, the measurement scales have been decided for the
variables. Thus, it is now possible to design the experiment. The first step is to
address the general design principles:

Randomization. The object is not assigned randomly to the subjects. All students
use the PSP and its ten assignments. The objective of the study is not to evaluate the
PSP vs. something else. The subjects are, as stated above, not selected randomly;
they are the students that have chosen to take the course. Moreover, the assignments
are not made in random order. The order is, however, not important, since the
measures used in the evaluation are the results of developing the ten programs.
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Blocking. No systematic approach to blocking is applied. The decision to measure
the ten programs and evaluate based on this, rather than looking at each individual
program, can be viewed as providing blocking for differences between the ten pro-
grams. Thus, blocking the impact of the differences between individual programs.

Balancing. It would have been preferable to have a balanced data set, but the
experimental study is based on a course where the participants have signed up for
the course, and hence it is impossible to influence the background of people and
consequently unable to balance the data set.

Standard design types. The information available is compared with the standard
type of designs outlined in Chap. 8. Both designs can be found among the standard
types, and the statistical tests are available in this book.

1. The definition, hypotheses and measures for the first evaluation means that the
design is: one factor with two treatments. The factor is the program and the
treatments are CSE or EE. The dependent variable is measured on a ratio scale,
and hence a parametric test is suitable. In this particular case, the t-test will be
used.

2. The second design is of the type “one factor with more than two treatments”.
The factor is the experience in C with four treatments, see the experience grading
above. The dependent variable is measured on a ratio scale and it is possible to
use a parametric test for this hypothesis too. The ANOVA test is hence suitable
to use for evaluation.

12.2.6 Instrumentation

The background and experience of the individuals is found through a survey handed
out at the first lecture, see Table A.1 in Appendix A. This data provides the input
to the characterization of the students, and hence are the independent variables in
the experiment. The objects are the programs developed within the PSP course. The
guidelines and measurements are provided through the PSP [82].

12.2.7 Validity Evaluation

There are four levels of validity threats to consider. Internal validity is primarily
focused on the validity of the actual study. External validity can be divided into
PSP students at Lund University forthcoming years, students at Lund University
(or more realistically to students at the CSE and EE programs), the PSP in
general, and for software development in general. The conclusion validity is
concerned with relationship between treatment and outcome, and the ability to draw
conclusions. Construct validity is about generalizing the result to the theory behind
the experiment.
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The internal validity within the course is probably not a problem. The large
number of tests (equal to the number of students) ensures the internal validity is
good.

Concerning the external threats, it is highly probable that similar results should
be obtained when running the course in a similar way at Lund University. It is
more difficult to generalize the results to other students, i.e. students not taking
the course. They are probably not as interested in software development and hence
they come from a different population. The results from the analysis can probably
be generalized to other PSP courses, where it is feasible to compare participants
based on their background in terms of computer science or electrical engineering or
experience of a particular programming language.

The major threat regarding the conclusion validity is the quality of the data
collected during the PSP course. The students are expected to deliver a lot of data
as part of their work with the course. Thus, there is a risk that the data is faked
or simply not correct due to mistakes. The data inconsistencies are, however, not
believed to be particularly related to any specific background, hence the problem is
likely the same independent of the background of the individuals. The conclusion
validity is hence not considered to be critical.

The construct validity includes two major threats. The first threat is that the
measurements as defined may not be appropriate measures of the entities, for
example, is “LOC/Development time” a good measure of productivity? The second
major threat to the construct validity is that it is part of a course, where the students
are graded. This implies that the students may bias their data, as they believe that
it will give them a better grade. It was, however, in the beginning of the course
emphasized that the grade did not depend on the actual data. The grade was based
on timely and proper delivery, and the understanding expressed in the reports handed
in during the course.

The results are found for the PSP, but they are likely to hold for software
development in general. There is no reason that people coming from different study
programs or having different background experience from a particular programming
language perform differently between the PSP and software development in general.
This is probably valid when talking about differences in background, although
the actual size of the difference may vary. The important issue is that there is a
difference, and the actual size of the difference is of minor importance.

12.3 Operation

12.3.1 Preparation

The subjects (students) were not aware of what aspects were going to be studied.
They were informed that the researchers wanted to study the outcome of the PSP
course in comparison with the background of the participants. They were, however,
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not aware of the actual hypotheses stated. The students, from their point of view, did
not primarily participate in an experiment; they were taking a course. All students
were guaranteed anonymity.

The survey material was prepared in advance. Most of the other material was,
however, provided through the PSP book [82].

12.3.2 Execution

The experiment was executed over 14 weeks, during which the ten programming
assignments were handed in regularly. The data was primarily collected through
forms. Interviews were used at the end of the course, primarily to evaluate the course
and the PSP as such.

The experiment was, as stated earlier, run within a PSP course and in a university
environment. The experiment has not been allowed to affect the course objectives.
The main differences between running the PSP solely as a course has been the initial
survey of the students’ background.

12.3.3 Data Validation

Data was collected for 65 students. After the course, the achievements of the
students were discussed among the people involved in the course. Data from six
students was removed, due to that the data was regarded as invalid or at least
questionable. Students have not been removed (at this stage) from the evaluation
based on the actual figures, but due to our trust in the delivered data and whether or
not the data is believed to be representative. The six students were removed due to:

e Data from two students was not filled in properly.

¢ One student finished the course much later than the rest, and that student had a
long period when no work was done with the PSP. This may have affected the
data.

e Data from two students was removed based on that they delivered their assign-
ments late and required considerably more support than the other students did,
hence it was judged that the extra advice may have affected their data.

* Finally, one student was removed based on that the background was completely
different than the others.

This means removing six students out of the 65, hence leaving 59 students for
statistical analysis and interpretation of the results.
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12.4 Analysis and Interpretation

12.4.1 Descriptive Statistics

As a first step in analyzing the data, descriptive statistics are used to visualize the
data collected.

Study program vs. productivity. Figure 12.1 shows the productivity for the two
study programs, when dividing the population into classes based on productivity.
The first class includes those with a productivity between 5 and 10 lines of code per
hour. Thus, the eighth class includes those with a productivity between 40 and 45
lines of code per hour. From Fig. 12.1, it is possible to see that students from the
Electrical Engineering program (EE) seem to have a lower productivity. Moreover,
it is noticeable to see that the variation of the distribution seems to be larger among
the students from the Computer Science and Engineering program (CSE). In total,
there are 32 CSE students and 27 EE students. The mean value for CSE students is
23.0 with a standard deviation of 8.7, and for the EE students the mean value is 16.4
with a standard deviation of 6.3. To gain an even better understanding of the data, a
box plot is drawn, see Fig. 12.2.

The whiskers in the box plot are constructed as proposed by Frigge et al. [60]
and discussed in Chap. 10. For the whiskers, a value that is the length of the box
multiplied with 1.5 and added or subtracted from the upper and lower quartiles
respectively. For example, for the CSE students (see Fig. 12.2): median = 22.7, box
length = 29.4 — 17.6 = 11.8, the upper tail becomes: 29.4 + 1.5 x 11.8 = 47.1.
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Fig. 12.2 Box plot of productivity for the two study programs
Table 12.1 Faults/KLOC for the different C experience classes
Class? Number of Median value of Mean value of Standard deviation
students faults/KLOC faults/KLOC of faults/KLOC
1 32 66.8 82.9 64.2
2 19 69.7 68.0 229
3 6 63.6 67.6 20.6
4 2 63 63.0 17.3
a

The different experience classes are explained in Sect. 12.2.2

There is, however, an exception to this rule, namely, that the upper and lower tails
should never be higher or lower than the highest and lowest value in the data set,
hence the upper tail becomes 42.5, which is the highest value. This exception is
introduced to avoid negative values or other types of unrealistic values. The other
values in Fig. 12.2 are found in a similar way.

From Fig. 12.2, it can be seen that there is a clear pattern that the EE students have
a lower productivity. Thus, it may be possible to identify the difference statistically
in a hypothesis test. The t-test is used below.

It is also important to look at outliers in comparison to the upper and lower tails.
For the CSE-students, there are no values outside the tails. For the EE students, there
is one value outside the tails, i.e. 34.4. This value is not consider an outlier since it
is not judged as an extreme value. It is an unusual value, but it is determined to keep
the value in the analysis.

C experience vs. faults’KLOC. The number of students for each class of C
experience is shown in Table 12.1, together with the mean and median values, and
standard deviation for respective class.
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From Table 12.1, it can be seen that the distribution is skewed towards no
or little experience of C. If looking at the mean values of faults’KLOC, there
seems to be a tendency that the more experienced students create fewer faults. The
standard deviation is, however, extremely large, and the median varies unexpectedly
in comparison with the mean value and the underlying hypothesis. The standard
deviation for the first class is very high and a further investigation of the data is
recommended. Thus, box plot can be used for this data set too.

Box plots are constructed for all four experience classes. The plots for classes
2-4 reveal nothing, all values are within the boundaries of the whiskers, and hence
the upper and lower tails become equal to the highest and lowest value respectively.
The box plot for the first class is more interesting, and it is shown in Fig. 12.3.

From Fig. 12.3, it can be seen that the lower tail is equal to the lowest value of
faults/ KLOC. The upper tail on the other hand is not equal to the highest value, and
hence there is one or more unusual values. There are actually two unusual values,
namely 145 and 398.1. The latter value is an extreme one; it is more than ten times
higher than the lowest value. It is also almost three times as high as the second
highest value. Thus, it is possible to conclude that the high standard deviation can
be explained with the extreme value. For the second hypothesis, the ANOVA test is
used.

The descriptive statistics have provided a better insight into the data, both in
terms of what can be expected from the hypothesis testing and to potential problems
caused by outliers.
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Table 12.2 Faults/KLOC for the different C experience class 1

Class Number of Median value of Mean value of Standard deviation
students faults/KLOC faults/KLOC of faults/KLOC
1 31 66 72.7 29.0

12.4.2 Data Reduction

Data reduction can always be debated, since as soon as data points are removed
information is lost. Two separate ways of reducing data can be identified:

» Single data points can be removed, for example, outliers, or

* The data can be analyzed and based on the analysis it may be concluded that
due to high inter-correlation between some variables, some measures should be
combined into some more abstract measure.

This means that it is possible to either remove data points or reduce the number of
variables. In the case of removing data points, the main candidates are the outliers.
It is by no means obvious that all outliers should be removed, but they are certainly
candidates for removal. It is important to remember that data points should not just
be removed because they do not fit with the belief or hypothesis. On the other
hand, it is important to remove data points which may make a completely valid
relationship invalid, due to that, for example, an extreme outlier is included, which
is not expected if replicating the study.

To reduce the number of variables statistical methods for data reduction are
needed. Some examples are principal component analysis and factor analysis
[90,91, 118]. These types of methods are not considered here, as the objective is
not to reduce the number of variables.

It is probably better to be restrictive in reducing a data set, as there is always
a risk that we aim for a certain result. Thus, for the data presented above, it was
chosen to only remove the extreme outlier for the number of faults/KLOC. After
removing the extreme outlier, the data for class 1 is summarized in Table 12.2.

The removal of the outlier decreased the mean value and standard deviation
considerably. The mean number of faults/KLOC is still highest for class 1. However,
the differences between the classes are not that large. After reducing the second data
set with one data point, it is not possible to perform the statistical test. This is where
the hypotheses are evaluated.

12.4.3 Hypothesis Testing

The first hypothesis regarding higher productivity for students following the Com-
puter Science and Engineering program is evaluated using a t-test. An ANOVA test
is applied to evaluate the hypothesis that more experience in C means fewer faults/
KLOC.
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Table 12.3 Results from the t-test

Factor Mean diff. Degrees of t-value p-value
freedom (DF)
CSE vs. EE 6.1617 57 3.283 0.0018

Table 12.4 Results from the ANOVA-test

Factor: C vs. Degrees of Sum of Mean square F-value p-value
faults/KLOC freedom (DF) squares

Between treatments 3 3483 1160.9 0.442 0.7236
Error 55 144304 2623.7

Study program vs. productivity. The results from the t-test (unpaired, two-tailed)
are shown in Table 12.3.

From Table 12.3, it can be concluded that Hj is rejected. There is a significant
difference in productivity for students coming from different study programs. The
p-value is very low so the results are highly significant. The actual reason for the
difference has to be further evaluated.

C experience vs. faults’KLOC. This hypothesis is evaluated with an ANOVA test
(factorial). The results of the analysis are shown in Table 12.4.

The results from the analysis are not significant, although some differences are
observed in terms of mean value, see above, it is not possible to show that there is a
significant difference in terms of number of faults/KLOC based on C experience.

Since the number of students in class 3 and 4 is very limited, class 2—4 are
grouped together to study the difference between class 1 and the rest. A t-test was
performed to evaluate if it was possible to differentiate between class 1 and the
grouping of classes 2—4 into one class. No significant results were obtained.

12.5 Summary

We have investigated two hypotheses:

1. Study program vs. productivity
2. C experience vs. faults/KLOC

We are able to show that students from the Computer Science and Engineering
program are more productive. This is in accordance with the expectation, although
not formally stated in the hypothesis. The expectation was based on the knowledge
that most students from CSE has taken more computer science and software
engineering and courses than those from the Electrical Engineering program.

It is not possible to show with any statistical significance that experience in C in-
fluences the number of faults/KLOC. This is interesting in relation to that Humphrey
[82] recommends thatone should follow the PSP course with a well-known
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language in order to focus on the PSP and not the programming language as such.
The results obtained may indicate one or several of the following results:

e The difference will become significant with more students.

e The number of faults introduced is not significantly affected by the prior
experience. There may be a tendency to make a certain number of faults when
developing software. The type of faults may vary, but the total number of faults
introduced is about the same.

e The inexperienced students may write larger programs, which directly affects the
number of faults/KLOC.

Other explanations can probably also be found, but they all have one thing in
common that is the need for replication. Thus, replications is an important issue
to enable us to understand, and hence control and improve the way software is
developed. Furthermore, other factors must be studied as well.

From a validity point of view, it is reasonable to believe that students (in general)
from a computer science program have higher productivity than students coming
from other disciplines have. This is more or less inherent from the educational
background and it is no surprise.

Since, it was not possible to show any statistically significant relation between
experience in a programming language and the number of faults/KLOC; there are
no conclusions to generalize. Further studies are needed, either through replication
of the PSP experiment or similar studies in other environments.

12.6 Conclusion

The presented study is a quasi-experiment, since it compares factors which are not
randomly assigned to subjects, but rather inherent properties of the subjects (i.e.
educational background). It is conducted with students as subjects, which provides
good internal validity at the expense of external validity of the results. Being
conducted in the PSP context would help replication of the study, as the context
is very well defined.

The study was conducted over several weeks, which mostly would have been a
threat to the construct validity. However, since this is a quasi-experiment, that is less
of a threat. There is no chance of cheating with the educational background. The
students were informed about the future use of their collected data, but no explicit
consent was obtained, which would have been preferred.

In the analysis, six data points were removed, since they did not consistently
follow the experimentation process. Another three data point outside the tails of the
box-plots were analyzed for being considered as outliers. Only an extreme value
was removed, since it would have impacted highly on the standard deviation, and
thus ruled the analysis outcome.



Chapter 13

Are the Perspectives Really Different?:
Further Experimentation on Scenario-Based
Reading of Requirements!'

Background This chapter presents an experimental study as it was published, with
the objective to show an example paper from an international journal. Furthermore,
the intention is that it should work as a suitable study to practice reviewing skills
on. It is important to notice that the paper has been reviewed and revised based on
the feedback before being published in the Empirical Software Engineering journal.
This means that the quality is higher than the average submitted experimental paper,
although paper standards also have raised over time since its original publication.
Reviewing scientific papers is further elaborated in Appendix A.2.

Abstract Perspective-Based Reading (PBR) is a scenario-based inspection tech-
nique where several reviewers read a document from different perspectives (e.g.
user, designer, tester). The reading is made according to a special scenario, specific
for each perspective. The basic assumption behind PBR is that the perspectives find
different defects and a combination of several perspectives detects more defects
compared to the same amount of reading with a single perspective. This paper
presents a study which analyses the differences in the perspectives. The study is
a partial replication of previous studies. It is conducted in an academic environment
using graduate students as subjects. Each perspective applies a specific modelling
technique: use case modelling for the user perspective, equivalence partitioning for
the tester perspective and structured analysis for the design perspective. A total of 30
subjects were divided into 3 groups, giving 10 subjects per perspective. The analysis
results show that (1) there is no significant difference among the three perspectives
in terms of defect detection rate and number of defects found per hour, (2) there
is no significant difference in the defect coverage of the three perspectives, and
(3) a simulation study shows that 30 subjects is enough to detect relatively small
perspective differences with the chosen statistical test. The results suggest that a
combination of multiple perspectives may not give higher coverage of the defects

!This chapter was originally published in Empirical Software Engineering: An International
Journal, Vol. 5, No. 4, pp..331-356.(2000).

C. Wohlin et al., Experimentation in Software Engineering, 175
DOI 10.1007/978-3-642-29044-2_-13,"© 2001 Springer science+business media
(successor in interest of Kluwer Académic Publishers, Boston)
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compared to single-perspective reading, but further studies are needed to increase
the understanding of perspective difference.

13.1 Introduction

The validation of requirements documents is often done manually, as requirements
documents normally include informal representations of what is required of an
intended software system. A commonly used technique for manual validation of
software documents is inspections, proposed by Fagan [54]. Inspections can be
carried out in different ways and used throughout the software development process
for (1) understanding, (2) finding defects, and (3) as a basis for making decisions.
Inspections are used to find defects early in the development process, and have
shown to be cost effective (e.g. by Doolan [45]).

A central part of the inspection process is the defect detection carried out by
an individual reviewer reading the document and recording defects (a part of
preparation, see Humphrey [81]). Three common techniques for defect detection
are Ad Hoc, Checklist and Scenario-based reading [137]. Ad Hoc detection denotes
an unstructured technique which provides no guidance, implying that reviewers
detect defects based on their personal knowledge and experience. The checklist
detection technique provides a list of issues and questions, capturing the knowledge
of previous inspections, helping the reviewers to focus their reading. In the scenario-
based approach, different reviewers have different responsibilities and are guided in
their reading by specific scenarios which aim at constructing a model, instead of just
passive reading.

A scenario® here denotes a script or procedure that the reviewer should follow.
Two variants of scenario-based reading have been proposed: Defect-Based Reading
[137] and Perspective-Based Reading [18]. The former (subsequently denoted
DBR) concentrates on specific defect classes, while the latter (subsequently denoted
PBR) focuses on the points of view of the users of a document.

Another part of the inspection process is the compilation of defects into a
consolidated defect list where all individual reviewers’ defect lists are combined.
This step may include the removal of false positives (reported defects that were not
considered to be actual defects) as well as the detection of new defects. This step is
often done in a structured inspection meeting where a team of reviewers participate.
The effectiveness of the team meeting has been questioned and studied empirically
by Votta [175] and Johnson and Tjahjono [87].

2There is considerable risk for terminology confusion here, as the term scenario also is used within
requirements engineering to denote a sequence of events involved in an envisaged usage situation
of the system under development. A use case is often said to cover a set of related (system usage)
scenarios. In scenario-based reading, however, the term scenario is a meta-level concept, denoting
a procedure that a reader of a document should follow during inspection.
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This paper describes research on scenario-based reading with a PBR approach.
The research method is empirical and includes a formal factorial experiment in an
academic environment. The presented experiment is a partial replication of previous
experiments in the area and focuses on refined hypotheses regarding the differences
among the perspectives in PBR. The paper concentrates on defect detection by
individual reviewers, while the team meeting aspects are not included.

The structure of the paper is as follows. Section 13.2 gives an overview of
related work by summarising results from previously conducted experiments in
requirements inspections with a scenario-based approach. Section 13.3 includes
the problem statement motivating the presented work. In Sect. 13.4, the experiment
plan is described including a discussion on threats to the validity of the study, and
Sect. 13.5 reports on the operation of the experiment. The results of the analysis
is given in Sect.13.6, and Sect. 13.7 includes an interpretation of the results.
Section 13.8 provides a summary and conclusions.

13.2 Related Work

The existing literature on empirical software engineering includes a number of
studies related to inspections, where formal experimentation has shown to be a
relevant research strategy [178]. The experiment presented in this paper relates
to previous experiments on inspections with a scenario-based approach. The
findings of a number of experiments on scenario-based inspection of requirements
documents are summarized below.

1. The Maryland-95 study [137] compared DBR with Ad Hoc and Checklist in
an academic environment. The experiment was run twice with 24 subjects in
each run. The requirements documents used were a water level monitoring
system (WLMS, 24 pages) and an automobile cruise control system (CRUISE,
31 pages).

Result 1:  DBR reviewers have significantly higher defect detection rates than
either Ad Hoc or Checklist reviewers.

Result2: DBR reviewers have significantly higher detection rates for those
defects that the scenarios were designed to uncover, while all three
methods have similar detection rates for other defects.

Result 3:  Checklist reviewers do not have significantly higher detection rates
than Ad Hoc reviewers.

Result 4:  Collection meetings produce no net improvement in the detection
rate — meeting gains are offset by meeting losses.

2. The NASA study [18] compared PBR with Ad Hoc in an industrial environment.
The experiment consisted of a pilot study with 12 subjects and a second main
run with 13 subjects. There were two groups of requirements documents used,;
general requirements documents: an automatic teller machine (ATM, 17 pages),
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a parking garage control system (PG, 16 pages); and two flight dynamics
requirements documents (27 pages each).

Result 1:  Individuals applying PBR to general documents have significantly
higher detection rates compared to Ad Hoc.

Result 2:  Individuals applying PBR to NASA-specific documents do not have
significantly higher detection rates compared to Ad Hoc.

Result 3:  Simulated teams applying PBR to general documents have signifi-
cantly higher detection rates compared to Ad Hoc.

Result 4:  Simulated teams applying PBR to NASA-specific documents have
significantly higher detection rates compared to Ad Hoc.

Result 5: Reviewers with more experience do not have higher detection rates.

3. The Kaiserslautern study [34] compared PBR with Ad Hoc in an academic
environment using the ATM and PG documents from the NASA study. The
experiment consisted of two runs with 25 and 26 subjects respectively.

Result 1:  Individuals applying PBR to general documents have significantly
higher detection rates compared to Ad Hoc.

Result 2:  Simulated teams applying PBR to general documents have signifi-
cantly higher detection rates compared to Ad Hoc.

Result 3:  The detection rates of five different defect classes are not signifi-
cantly different among the perspectives.

4. The Bari study [61] compared DBR with Ad Hoc and Checklist in an academic
environment using the WLMS and CRUISE documents from the Maryland-95
study. The experiment had one run with 30 subjects.

Result 1: DBR did not have significantly higher defect detection rates than
either Ad Hoc or Checklist.

Result 2: DBR reviewers did not have significantly higher detection rates for
those defects that the scenarios were designed to uncover, while all
three methods had similar detection rates for other defects.

Result 3:  Checklist reviewers did not have significantly higher detection rates
than Ad Hoc reviewers.

Result 4:  Collection meetings produced no net improvement in the detection
rate — meeting gains where offset by meeting losses.

5. The Trondheim study [164] compared the NASA study version of PBR with a
modified version of PBR (below denoted PBR2) where reviewers were given
more instructions on how to apply perspective-based reading. The study was
conducted in an academical environment using the ATM and PG documents from
the NASA study. The experiment consisted of one run with 48 subjects.

Result 1:  PBR2 reviewers did not have significantly higher defect detection
rates than PBR.]

Result 2:  Individuals applying PBR2 reviewed significantly longer time com-
pared to those who applied PBR.
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Result 3: Individuals applying PBR2 suggested significantly fewer potential
defects compared to those who applied PBR.

Result 4:  Individuals applying PBR2 had significantly lower productivity and
efficiency than those who applied PBR.

6. The Strathclyde study [124] compared DBR with Checklist in an academic
environment using the WLMS and CRUISE documents from the Maryland study.
The experiment consisted of one run with 50 subjects.

Result 1:  In the WLMS document, DBR did not have significantly higher
defect detection rates than Checklist.

Result2: In the CRUISE document, DBR had significantly higher defect
detection rates than Checklist.

Result 3:  Collection meetings produced no net improvement in the detection
rate — meeting gains were offset by meeting losses.

7. The Linkoping study [147] compared DBR with Checklist in an academic
environment using the WLMS and CRUISE documents from the Maryland study.
More defects were added to the list of total defects. The experiment consisted of
one run with 24 subjects.

Result 1:  DBR reviewers did not have significantly higher defect detection
rates than Checklist reviewers.

Result 2: DBR reviewers did not have significantly higher detection rates than
Checklist reviewers.

8. The Maryland-98 study [152] compared PBR with Ad Hoc in an academic
environment using the ATM and PG documents from the Maryland study. The
experiment consisted of one run with 66 subjects.

Result 1:  PBR reviewers had significantly higher defect detection rates than
Ad Hoc reviewers.

Result 2:  Individuals with high experience applying PBR did not have signifi-
cantly? higher defect detection rates compared to Ad Hoc.

Result 3:  Individuals with medium experience applying PBR had significantly
higher defect detection rates compared to Ad Hoc.

Result4: Individuals with low experience applying PBR had significantly
higher defect detection rates compared to Ad Hoc.

Result 5:  Individuals applying PBR had significantly lower productivity com-
pared to those who applied Ad Hoc.

9. The Lucent study [138] replicated the Maryland-95 study in an industrial
environment using 18 professional developers at Lucent Technologies. The

3Results 24 of the Maryland-98 study apply a significance level of 0.10, while 0.05 is the chosen
significance level in all other results.
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Table 13.1 Summary of studies

Study Purpose Environment Subjects Significant?
Maryland-95 DBR vs. AdHoc and checklist Academic 24+24 YES

Bari DBR vs. AdHoc and checklist Academic 30 NO
Strathclyde DBR vs. checklist Academic 50 Inconclusive
Link6ping DBR vs. checklist Academic 24 NO

Lucent DBR vs. AdHoc and checklist Industrial 18 YES

NASA PBR vs. AdHoc Industrial 12+13 YES
Kaiserslautern PBR vs. AdHoc Academic 25426 YES
Trondheim PBR vs. PBR2 Academic 48 NO
Maryland-98 PBR vs. AdHoc Academic 66 YES

replication was successful and completely corroborated the results from the
Maryland-95 study.

The results of the different studies vary substantially. An attempt to systemati-
cally address the combined knowledge, gained from experiments and replications
is reported by Hayes [74], where meta-analysis is applied to the results of the
Maryland-95, Bari, Strathclyde, Linkdping and Lucent studies. It is concluded from
the meta-analysis that the effect sizes for the inspection methods are inhomogeneous
across the experiments. The Maryland-95 and Lucent studies show most similar
results, and an interpretation of the meta-analysis identifies characteristics which
make them different from the other three studies: (1) they are conducted in a context
where the subjects are more familiar with the notation used, (2) they are conducted
in the US where cruise control are more common in cars than in Europe where the
other three studies are performed. These hypotheses are, however, not possible to
test with the given data, and thus more experimentation is needed.

Table 13.1 includes a summary of the presented studies. The Maryland-95,
NASA, Kaiserslautern, Maryland-98, and Lucent studies indicate that a scenario-
based approach gives higher detection rate. The Bari, Strathclyde, and Link6ping
studies could, however, not corroborate these results, which motivates further
studies to increase the understanding of scenario-based reading.

Many of the studies concluded that real team meetings were ineffective in terms
of defect detection. (There may of course be other good reasons for conducting
team meetings apart from defect detection, such as consensus building, competence
sharing, and decision making.)

The study presented here is subsequently denoted the Lund study. The Lund
study is a partial replication of the NASA study, and is based on a lab package [19]
provided by the University of Maryland in order to support empirical investigations
of scenario-based reading. The problem statement motivating the Lund study is
given in the subsequent section.
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13.3 Research Questions

The previous studies, summarised in Sect. 13.2, have mainly concentrated on
comparing scenario-based reading with checklist and Ad Hoc techniques in terms
of defect detection rates. The objective of the Lund study is, however, to investigate
the basic assumption behind scenario-based reading, that the different perspectives
find different defects. Another interest is the efficiency of the different perspectives
in terms of defects detected per hour. The following two questions are addressed:

1. Do the perspectives detect different defects?
2. Is one perspective superior to another?

There are two aspects of superiority that are addressed: effectiveness, i.e. how
high fraction of the existing defects are found (detection rate), and efficiency, i.e.
how many defects are found per time unit.

The perspectives proposed by Basili et al. [18] are designer, tester and user.
The users are important stakeholders in the software development process, and
especially when the requirements are elicited, analysed and documented. The user
role in PBR is focused on detecting defects at a high abstraction level related to
system usage, while the designer is focused on internal structures and the tester is
focused on verification.

Previous studies have mainly concentrated on the effectiveness in terms of
detection rate. From a software engineering viewpoint it is important also to assess
the efficiency (e.g. in terms of detected defects per time unit), as this factor
is important for a practitioner’s decision to introduce a new reading technique.
The specific project and application domain constraints then can, together with
estimations of how much effort is needed, be a basis for a trade-off between quality
and cost.

One main purpose of PBR is that the perspectives detect different kinds of
defects in order to minimise the overlap among the reviewers. Hence, a natural
question is whether reviewers do find different defects or not. If they detect the
same defects, the overlap is not minimised and PBR does not work as it was meant
to. If all perspectives find the same kinds of defects it may be a result of (1)
that the scenario-based reading approach is inappropriate, (2) that the perspectives
may be insufficiently supported by their accompanying scenarios, or (3) that other
perspectives are needed to gain a greater coverage difference. The optimal solution
is to use perspectives with no overlap and as high defect detection rate as possible,
making PBR highly dependable and effective. The Lund study addresses the overlap
by investigating whether the perspectives detect different defects.

Research question 1 is also interesting from a defect content estimation perspec-
tive. The capture-recapture approach to defect content estimation uses the overlap
among the defects that the reviewers find to estimate the number of remaining
defects in a software artifact [51, 120]. The robustness of capture-recapture using
PBR is studied by Thelin and Runeson [167], with the aim of investigating capture—
recapture estimators applied to PBR inspections under the hypothesis that PBR
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works according to its underlying assumption. In the Lund study it is investigated
whether the assumptions of PBR are factual. Hence, the Lund study and the Thelin
and Runeson [167] study complement each other in order to answer the question
whether capture-recapture estimations can be used for PBR inspections.

13.4 Experiment Planning

This section describes the planning of the reading experiment. The planning
includes the definition of dependent and independent variables, hypotheses to be
tested in the experiment, experiment design, instrumentation and an analysis of
threats to the validity of the experiment [178].

The reading experiment is conducted in an academical environment with close
relations to industry. The subjects are fourth-year students at the Master’s pro-
grammes in Computer Science and Engineering and Electrical Engineering at Lund
University.

13.4.1 Variables

The independent variables determine the cases for which the dependent variables are
sampled. The purpose is to investigate different reading perspectives and methods,
applied to two objects (requirements documents). The inspection objects are the
same as in the University of Maryland lab package [19], and the design and
instrumentation are also based on this lab package. The variables in the study are
summarized in Table 13.2 together with brief explanations.

13.4.2 Hypotheses

Perspective-Based Reading is assumed to provide more efficient inspections, as
different reviewers take different perspectives making the defect overlap smaller
[18]. The objective of the study is to empirically test whether these assumptions are
true. In consequence, hypotheses related to performance of different perspectives
are stated below. The three null hypotheses address efficiency, effectiveness and
distribution over perspectives.

e Hy grr. The perspectives are assumed to have the same finding efficiency, i.e.
the number of defects found per hour of inspection is not different for the various
perspectives.
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Table 13.2 Variables
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Name

Values

Description

Independent PERSP
variables

DOC

Controlled EXPERIENCE
variable

Dependent TIME

variables

DEF

EFF

RATE

FOUND

{U,T,D}

{ATM,PG}

Ordinal

Integer

Integer

60*DEF/TIME

DEF/TOT

Integer

One of three perspectives is applied by
each subject: User, Tester, and
Designer.

The inspection objects are two
requirements documents: one for an
automatic teller machine (ATM) and
one for a parking garage control system
(PG). The ATM document is 17 pages
and contains 29 defects. The PG
document is 16 pages and contains 30
defects.

The experience with user, tester, design
perspectives is measured on a five-level
ordinal scale and used in the allocation
of subjects to perspectives. (See
Sects. 13.4.3 and 13.6.4)

The time spent by each reviewer in
individual preparation is recorded by
all subjects. The time unit used is
minutes.

The number of defects found by each
reviewer is recorded, excluding false
positives. The false positives are
removed by the experimenters, in order
to ensure that all defect candidates are
treated equally.

The defect finding efficiency, i.e. the
number of defects found per hour, is
calculated as (DEF*60)/TIME.

The defect finding effectiveness, i.e. the
fraction of found defects by total
number of defects (also called detection
rate) is calculated as DEF divided by
the total number of known defects
contained in the inspected documents.

The number of reviewers belonging to a
certain perspective, which have found a
certain defect in a specific document is
recorded. This variable is used for
analysing defect finding distributions
for different perspectives.

* Hygrare. The perspectives are assumed to have the same effectiveness or
detection rates, i.e. the fraction of defects identified is not different for the various

perspectives.

* Hyrounp. The perspectives are assumed to find the same defects, i.e. the
distributions over defects found are the same for the different perspectives.
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Table 13.3 Experiment

design PERSP
User Designer Tester
DOC ATM 5 5 5
PG 5 5 5

13.4.3 Design

To test these hypotheses an experiment with a factorial design [125] is used with two
factors (PERSP and DOC). The design is summarized in Table 13.3. The experiment
varies the three perspectives over two documents.

The assignment of an individual subject to one of the three PBR perspectives
(U, D, T), was conducted based on their reported experience (see Sect. 13.6.4),
similar to the NASA study [18]. The objective of experience-based perspective
assignment is to ensure that each perspective gets a fair distribution of experi-
enced subjects, so that the outcome of the experience is affected by perspective
difference rather than experience difference. The experience questionnaire required
the subjects to grade their experience with each perspective on a five level ordinal
scale. The subjects were then sorted three times, giving a sorted list of subjects
for each perspective with the most experienced first. Within the same experience
level, the subjects were placed in random order. The subjects were then assigned
to perspectives by selecting a subject on top of a perspective list and removing this
subject in the other lists before continuing with the next perspective in a round
robin fashion starting with a randomly selected perspective, until all subjects were
assigned a perspective.

The instruments of the reading experiment consist of two requirements docu-
ments and reporting templates for time and defects. These instruments are taken
from the University of Maryland lab package [19] and are reused with minimal
changes.

The factorial design described above is analysed with descriptive statistics (bar
plots and box plots) and analysis of variance (ANOVA) [125] for the hypotheses
Hy grr,and Hy garkg . For the Hy rounp hypothesis a Chi-square test [157] is used
together with a correlation analysis [144].

13.4.4 Threats to Validity

The validity of the results achieved in experiments depends on factors in the
experiment settings. Different types of validity can be prioritized depending on the
goal of the experiment. In this case, threats to four types of validity are analysed
[37, 178]: conclusion validity, internal validity, construct validity and external
validity.
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Conclusion validity concerns the statistical analysis of results and the compo-
sition of subjects. In this experiment, well known statistical techniques are applied
which are robust to violations of their assumptions. One general threat to conclusion
validity is, however, the low number of samples, which may reduce the ability to
reveal patterns in the data. In particular, there are few samples for the Chi-square
test, which is further elaborated in Sect. 13.6.3.

Internal validity concerns matters that may affect the independent variable with
respect to causality, without the researchers knowledge. There are two threats to
internal validity in this experiment, selection and instrumentation. The experiment
was a mandatory part of a software engineering course, thus the selection of
subjects is not random, which involves a threat to the validity of the experiment.
The requirements documents used may also affect the results. The documents are
rather defect-prone and additional issues in the documents could be considered
as defects. On the other hand, it is preferable to have the same definition of
defects as in the previous studies for comparison reasons. Other threats to internal
validity are considered small. Each subject was only allocated to a single object
and a single treatment, hence there is no threat of maturation in the experiment.
The subjects applied different perspectives during inspection, but the difference
among perspectives are not large enough to suspect compensatory equalisation of
treatments or compensatory rivalry. The subjects were also told that their grading
in the course was not depending on their performance in the experiment, only on
their serious attendance. There is of course a risk that the subjects lack motivation;
they may, for example, consider their participation a waste of time or they may
not be motivated to learn the techniques. The teacher in the course in which the
experiment was per-formed has, however, made a strong effort in motivating the
students. It was clearly stated that a serious participation was mandatory for passing
the course. It is the teacher’s opinion that the students made a very serious attempt
in their inspection.

Construct validity concerns generalisation of the experiment result to concept
or theory behind the experiment. A major threat to the construct validity is that
the chosen perspectives or the reading techniques for the perspectives may not be
representative or good for scenario-based reading. This limits the scope for the
conclusions made to these particular perspectives and techniques. Other threats
to the construct validity are considered small. The subjects did not know which
hypotheses were stated, and were not involved in any discussion on advantages and
disadvantages of PBR, thus they were not able to guess what the expected results
were.

External validity concerns generalisation of the experiment result to other
environments than the one in which the study is conducted. The largest threat
to the external validity is the use of students as subjects. However, this threat is
reduced by using fourth-year students which are close to finalise their education
and start working in industry. The setting is intended to resemble a real inspection
situation, but the process that the subjects participate in is not part of a real
software development project. The assignments are also intended to be realistic,



186 13 Are the Perspectives Really Different?

but the documents are rather short, and real software requirements documents may
include many more pages. The threats to external validity regarding the settings and
assignments are, however, considered limited, as both the inspection process and the
documents resemble real cases to a reasonable extent.

It can be concluded that there are threats to the construct, internal and external
validity. However, these are almost the same as in the original studies. Hence, as
long as the conclusions from the experiment are not drawn outside the limitations
of these threats, the results are valid.

13.5 Experiment Operation

The experiment was run during spring 1998. The students were all given a 2h
introductory lecture where an overview of the study was given together with a
description of the defect classification. A questionnaire on experience was given
and each subject was assigned to a perspective, as described in Sect. 13.4.3. The
students were informed that the experiment was a compulsory part of the course,
but the grading was only based on serious participation in the study and not on
the individual performance of the students. The anonymity of the students was
guaranteed.

A 2h exercise was held, where the three PBR perspectives were described and
illustrated using a requirements document for a video rental system (VRS). During
the second hour of the exercise, the subjects were practising their own perspective
reading technique for the VRS document, and had the opportunity to ask questions.
The data collection forms were also explained and used during the exercise. The
perspective-based reading of the VRS document was completed by the students on
their own after the classroom hours.

The hand-outs for the experiment, which were handed out during the exercise,
included the following instrumentation tools:

. Defect Classification which describes defect classes to be used in the defect list.

. Time Recording Log for recording the time spent on reading.

. Defect List for recording the found defects.

. Reading Instruction, specific for the user, designer, and tester perspectives
respectively.

5. Modelling Forms, specific for the user, designer, and tester perspectives respec-

tively.
6. The requirements document (either ATM or PG).

AW N =

The students were instructed not to discuss the ATM or PG documents and the
defects that they find. They were allowed to discuss the PBR perspectives in relation
to the VRS document before they started with the actual data collection.
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13.6 Data Analysis

This section presents the statistical analysis of the gathered data. The data were
collected from the hand-ins from subjects. Each defect in each subject’s defect log
was compared with the original ‘correct’ defect list provided by the University
of Maryland lab package. In a meeting, the authors discussed each defect and
decided whether it corresponded to a ‘correct’ defect. If no corresponding ‘correct’
defect was found, the reported defect was considered a false positive.* The reported
time spent was also collected and the EFF, RATE, and FOUND measures were
calculated. The total data sets are given in Tables 13.6-13.8.

13.6.1 Individual Performance for Different Perspectives

Box-plots’ of individual performance in terms of number of defects found per hour
(EFF), and the fraction of found defects against the total number of defects (RATE),
are shown in Fig. 13.1. The box-plots are split by document and perspective.

For EFF, the Tester perspective on the PG document has a higher mean than
the User and Designer perspectives, while for the ATM document, the Designer
perspective has a higher mean. For RATE the Designer means are higher compared
to the User and Tester perspectives for both documents. There are, however, too few
data points per group for any further interpretation of the box-plots, with respect to
outliers and skewness.

When several dependent variables are measured, the multi-variate analysis of
variance (MANOVA) can be used to assess if there exists any statistically significant
difference in the total set of means. The results of MANOVA tests regarding the
effect of PERSP reveal no significance and indicate absence of interaction effects.
Furthermore, there are no significant differences in the means of EFF, RATE for the
PERSP variable, as shown by the analysis of variance (ANOVA) in Tables 13.4 and
13.5. From this analysis it can be concluded that the null hypotheses for EFF and
RATE can not be rejected for any of the three perspectives.

“4Some of the defects that were decided to be false positives may in fact be true defects if the defect
list from the Maryland lab package is incomplete. It was decided, however, that it is important
from a replication viewpoint that the same list of ‘correct’ defects was used. This decision is not
considered to have any significant impact on the result as there were only few false positives that
were questionable.

3The box-plots are drawn with the box height corresponding to the 25th and 75th percentile, with
the 50th percentile (the median) marked in the box. The whiskers correspond to the 10th and 90th
percentile.
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Fig. 13.1 Box plots for EFF and RATE split by DOC and PERSP

Table 13.4 ANOVA table for EFF
DF SumofSq MeanSq  F-Value  p-value Lambda  Power

PERSP 2 1.751 0.875 0.737 0.4893 1.473 0.156
DOC 1 1.640 1.640 1.380 0.2516 1.380 0.193
PERSP * DOC 2 2.229 1.114 0.937 0.4055 1.875 0.187
Residual 24 28.527 1.189

Table 13.5 ANOVA table for RATE
DF SumofSq MeanSq  F-Value p-value Lambda  Power

PERSP 2 0.012 0.006 0.802 0.4602 1.604 0.166
DOC 1 0.011 0.011 1.488 0.2344 1.488 0.205
PERSP * DOC 2 0.004 0.002 0.259 0.7739 0.518 0.085

Residual 24 0.172 0.007
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Fig. 13.2 Bar charts illustrating the distribution of number of reviewers that found each defect

13.6.2 Defects Found by Different Perspectives

The hypothesis Hy rounp regarding the overlap of the found defects among the
perspectives, is studied in this section. Descriptive statistics in the form of bar chart
plots are shown in Fig. 13.2. For each document the distribution of number of found
defects per perspective is shown. There do not seem to be any particular patterns
in the different perspective distributions; the defect findings of each perspective
seem similarly spread over the defect space. If there had been large differences in
the perspective distributions, the bar plot would presumably have groups of defects
where one perspective would have a high number of findings while the others would
have a low number of findings.

In order to compare the distributions of found defects for each perspective and
investigate if there is a significant difference among which defects the perspectives
find, a contingency table is created for which a Chi Square test is made [157, pp.
191-194], as shown in Fig. 13.3. The defects that no perspective have found are
excluded from the contingency tables (the “Inclusion criteria” in Fig. 13.3), as these
cases do not contribute to the testing of differences.

The Chi Square p-values are far from significant, indicating that it is not possible
with this test and this particular data set to show a difference in the perspectives?
defect finding distributions. There are rules of thumb regarding when the Chi Square
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Summary Table for DEFID, PERSP Summary Table for DEFID, PERSP
Inclusion criteria: Counts>0 from PG.data Inclusion criteria: Counts > 0 from ATM.data
Num. Missing 0 Num. Missing 0
DF 46 DF 46
Chi Square 33,951 Chi Square 41,676
Chi Square P-Value ,9058 Chi Square P-Value 16538
G-Squared . G-Squared .
G-Squared P-Value . G-Squared P-Value .
Contingency Coef. ,494 Contingency Coef. ,535
Cramer's V ,402 Cramer's V ,448
Observed Frequencies for DEFID, PERSP Observed Frequencies for DEFID, PERSP
Inclusion criteria: Counts>0 from PG.data Inclusion criteria: Counts > 0 from ATM.data
D T U Totals D T U Totals
PGDef01| 2| 1 2 5 ATMDef01 3|1 1 5
PGDef02| 3| 2 | 4 9 ATMDef02 | 4| 4 | 2 10
PGDef03 | 1 3 0 4 ATMDef03 | 2| O 0 2
PGDef04 | 1 1 0 2 ATMDef04 | 4 | 2 3 9
PGDef05| 2 | 2 3 7 ATMDef06 | 2 | 1 0 3
PGDef06 | 3 | 2 2 7 ATMDef07 | 2 | 0O 1 3
PGDef07 | 1 1 0 2 ATMDef08 | 3 | 3 1 7
PGDef08 | 3| 4 5 12 ATMDef09 | 2| O 0 2
PGDefog| 1| 3 | 4 8 ATMDeft0| 1| 0 | 2 3
PGDef10| 0| 1 0 1 ATMDef11| 2| 3 1 6
PGDeft1| 2| 0 4 6 ATMDef12 | 1 3 3 7
PGDef12| 0| 1 1 2 ATMDef13| 3| 0 | 2 5
PGDef14| 4| 4 1 9 ATMDef15| 0| 2 1 3
PGDeft5| 1| 2 | 1 4 ATMDef16 | 2| 3 | 2 7
PGDeft6| 2| 0O 1 3 ATMDef17 | 1 1 0 2
PGDef17| 1| 1 2 4 ATMDef18 | 1| 0O 1 2
PGDef18| 0| 1 0 1 ATMDef19 | 1| 2 1 4
PGDef21 3| 1 1 5 ATMDef20| 0| 2 1 3
PGDef22| 1| O 1 2 ATMDef22| 1| 0 | O 1
PGDef23 | 1 0 1 2 ATMDef23 | 0| 2 0 2
PGDef24| 0| 1 2 3 ATMDef26 | 0 | 2 0 2
PGDef27| 0| O 1 1 ATMDef27 | 3| 0 1 4
PGDef2g| 1| 0 | 2 3 ATMDef28 | 3 | 1 2 6
PGDef30| 0| 1 2 3 ATMDef29 | 1 2 3 6
Totals 33 32 40 105 Totals 42 34 28 104

Fig. 13.3 Chi Square tests and contingency tables for defects found by U, T, D per DOC

test can be used [157, pp. 199-200], saying that no more than 20% of the cells should
have an expected frequency of less than 5, and no cell should have an expected
frequency of less than 1. These rules of thumb are not fulfilled by the data set in this
case, but it may be argued that the rules are too conservative and as the expected
frequencies in our case are rather evenly distributed, the Chi Square test may still be
valid (see further Sect. 13.6.3).
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ATM Document

Correlation Analysis
Correlation p-Value 95% Lower 959, Upper

User, Tester ,480 ,0076 ,138 ,720
User, Designer ,499 ,0052 ,162 ,732
Tester, Designer ,258 ,1789 -,120 ,570

29 observations were used in this computation.

Correlation Analysis
Inclusion criteria: User > 0 OR Tester > 0 OR Designer > 0 from ATM-ctable.data

Correlation p-Value 95% Lower 95% Upper

User, Tester ,357 ,0867 -,054 ,665
User, Designer ,352 ,0915 -,059 ,662
Tester, Designer ,043 ,8449 -,367 ,439

24 observations were used in this computation.

PG Document

Correlation Analysis
Correlation p-Value 95% Lower 95% Upper

User, Tester ,463 ,0092 ,123 ,706
User, Designer ,543 ,0016 ,228 ,756
Tester, Designer ,601 ,0003 ,307 ,790

30 observations were used in this computation.

Correlation Analysis
Inclusion criteria:  User >0 OR Tester > 0 OR Designer > 0 from PG-ctable.data

Correlation p-Value 95% LOWET 950, ypper

User, Tester ,319 ,1300 -,097 ,640
User, Designer 414 ,0438 ,012 ,700
Tester, Designer ,493 ,0134 12 ,748

24 observations were used in this computation.

Fig. 13.4 Correlation analysis of the perspectives for each document

The Chi Square test does not give a measure of the degree of difference. In order
to analyse how different (or similar) the perspectives are, a correlation analysis is
presented in Fig. 13.4, using the Pearson correlation coefficient [143, pp. 338-340].

Two different correlation analyses are provided for each document, one with all
“correct” defects included and one where only those defects are included that were
found by at least one reviewer. The latter may be advocated, as we are interested in
the differences in the set of defects that are found by each perspective; the defects
that no perspective find do not contribute to differences among perspectives.

The p-value indicates if the correlation coefficient is significant, and the confi-
dence intervals presented indicate the range wherein the correlation coefficient is
likely to be.

The correlation analysis indicates that there are significantly positive correlations
among the perspectives, meaning that when one perspective finds a defect it is likely

ol LElUMN Zyl_i.lbl
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Fig. 13.5 Defect coverage User Designer User Designer
for the PG and ATM

documents

o o
AWA ATM AWA

PG
Tester Tester

that others also find it. The only correlation coefficient that is far from significant is
the Designer-Tester correlation for the ATM document.

Another way of qualitatively analysing the overlap among the perspectives is
Venn-diagrams, as used in the NASA study [18, p. 151].

For the purpose of comparison we include such diagrams for the Lund study
data, as shown in Fig. 13.5. Each defect is categorised in one of seven classes
depending on which combinations of perspectives that have a FOUND measure
greater than zero. The numbers in the Venn-diagrams indicate how many defects
that belong to each class. For example, for the PG document, there are ten defects
which were found by all perspectives, while five defects were found by both the
user and designer perspectives and only one defect was found solely by the user
perspective.

This type of analysis is very sensitive to the number of subjects. It is enough that
only one reviewer finds a defect, for the classification to change. The probability
that a defect is found increases with the number of reviewers, and if we have a
large number of reviewers, the defects will be more likely to be included in the
class where all perspectives have found it. This means that this type of analysis
is not very robust, and does not provide meaningful interpretations in the general
case. In our case, we can at least say that the defect coverage analysis in Fig. 13.5
does not contradict our previous results that we cannot reject the hypothesis that the
perspectives are similar with respect the sets of defects that they find. The defects
found by all perspectives is by far the largest class.

13.6.3 Is the Sample Size Large Enough?

The outcome of the Lund study is that no significant difference among the perspec-
tives can be detected. A question arises whether this is due to lack of differences
in the data, or that the statistical tests are not able to reveal the differences, for
example, due to the limited amount of data. In order to evaluate the Chi-square test
the perspective defect detection data sets are simulated with stochastic variations
among perspectives and the Chi-square test is applied to the simulated data.



13.6 Data Analysis 193
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Fig. 13.6 Fraction of significant test results concerning Ho rounp

The simulation is designed to resemble the experiment presented in the previous
section. The difference is that in the simulation case, the probability for detection of
a specific defect by a perspective is an independent variable. Furthermore, only the
FOUND dependent variable is applied, since the time aspect is not modelled. The
simulation model is designed as follows:

e The number of defects in each simulated document is 30.

* For every simulated inspection, three perspectives are used with ten reviewers
per perspective. It is assumed that a document contains three different types of
defects, which have different probabilities of being detected. One perspective has
high probability (Pyicy) to detect one third of the defects and low probability
(Prow) to detect the other two thirds of the defects. The difference between
Pricy and Prow is denoted P,. The probability levels are set to values between
0.05 and 0.5 in steps of 0.05, which are values around the measured mean in the
Lund study.

e 1,000 runs of each inspection are simulated.

The Hy roynp hypothesis is tested with the Chi-Square test and the results are
presented in Fig. 13.6. Each simulated experiment is tested separately. The figure
shows the fraction of tests that are rejected for each case. For all simulation
cases with P, larger than 0.3, the test can significantly show a difference among
the simulated perspectives. For simulation cases with Pgjcy lower than 0.25, the
differences can be shown if P, is larger than 0.2. The tests are conducted with a
significance level of 0.05. The simulation study shows that differences in FOUND
are possible to detect with the Chi-Square test, even if the perspective differences
are small and the sample size is small.
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Fig. 13.7 Average experience of subjects regarding their general experience of their perspective
and specific experience with their modelling technique

13.6.4 Experience of Subjects

The experience was measured through a questionnaire which covers each perspec-
tive in general, as well as experience with the specific modelling techniques of
the three perspectives (use case modelling, equivalence partitioning, and structured
analysis). The experience is measured for each general perspective and each specific
modelling technique on a five level ordinal scale: 1 =none, 2 = studied in class or
from book, 3 = practised in a class project, 4 =used on one project in industry,
5 =used on multiple projects in industry.

Figure 13.7 shows the average experience for each subject regarding the perspec-
tive to which the subject was assigned, both for the perspective in general and for
the specific modelling technique.

It can be seen that the allocation of subjects (according to the algorithm explained
in Sect. 13.4.3) has, as expected, resulted in a relatively balanced experience profile
over the perspectives. It can also be noted that the students had very little industrial
experience.

13.7 Interpretations of Results

In this section the data analysis is interpreted with respect to the hypotheses stated
in Sect. 13.4.2. The first two hypotheses are tested using ANOVA and the third
hypothesis is tested using a Chi-square test. The following three null-hypotheses
can not be rejected:

e Hy grr The perspectives are assumed to find the same number of defects per
hour. This hypothesis can not be rejected.

e Hy rare The perspectives are assumed to find the same number of defects. This

hypothesis can not be rejected.
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* Hy rounp The perspectives are assumed to find the same defects. This hypothe-
sis can not be rejected.

It can hence be concluded that there is no significant difference among the three
perspectives, user, design and test. This is true for all the three hypotheses, i.e. there
is no significant difference in terms of effectiveness or efficiency. Furthermore,
there is no significant difference in time spent using the different perspectives,
hence, the time spent does not bias in favour of any of the techniques. The lack
of difference among the three perspectives does, if the result is possible to replicate
and generalize, seriously affect the cornerstones of the PBR. The advantages of PBR
are assumed to be that the different perspectives focus on different types of defects,
and thus detect different defect sets. This study shows no statistically significant
difference among the sets of defects found by the three perspectives, and thus the
advantages of PBR can be questioned.

Threats to the conclusion validity of the results are that the number of samples
is low, in particular for the Chi-square test. However, a simulation study reveals
that the Chi-square test can with 30 subjects detect differences among perspectives
for relatively small differences in detection probability. Furthermore, the bar charts
over the defects found by different perspectives (see Fig. 13.2) do not indicate any
clear pattern, which supports the non-significant results. The ANOVA statistics
are applied within acceptable limits, and these do not show any difference among
the perspectives. The specific perspectives and the reading techniques for the
perspectives might also be a threat to the validity of the results, when trying to
apply the results to scenario-based reading in general.

The validity threat regarding the motivation of subjects can be evaluated by
comparing the detection rates of the Lund study with other studies. The individual
PBR detection rate for the NASA study [18] was on average 0.249 for the pilot study
and 0.321 for the main run, while the Lund study shows an average individual PBR
detection rate of 0.252. The rates are comparable, supporting the assumption that
the subjects in this study was as motivated as in the NASA study.

Other threats to the validity in Sect. 13.4.4 are not considered differently in the
light of the result.

13.8 Summary and Conclusions

The study reported in this paper is focused on the evaluation of Perspective Based
Reading (PBR) of requirements documents. The study is a partial replication of
previous experiments in an academic environment based on the lab package from
University of Maryland [19].

The objective of the presented study is twofold:

1. Investigate the differences in the performance of the perspectives in terms of
effectiveness (defect detection rate) and efficiency (number of found defects per
hour).
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2. Investigate the differences in defect coverage of the different perspectives, and
hence evaluate the basic assumptions behind PBR supposing that different
perspectives find different defects.

The experiment setting includes two requirements documents and scenarios for
three perspectives (user applying use case modelling, designer applying structured
analysis, and tester applying equivalence partitioning). A total of 30 MSc students
were divided into 3 groups, giving 10 subjects per perspective.

In summary the results from the data analysis show that:

1. There is no significant difference among the user, designer and tester perspectives
in terms of defect detection rate and number of defects found per hour.
2. There is no significant difference in the defect coverage of the three perspectives.

The interpretation of these results suggests that a combination of multiple
perspectives may not give higher defect coverage compared to reading with only
one perspective.

The results contradict the main assumptions behind PBR. Some of the previous
studies, summarized in Sect. 13.2, have shown significant advantages with Scenario-
based Reading over Ad Hoc inspection, but no statistical analysis on the difference
among perspective performance is made in any of the studies reported in Sect. 13.2.
Furthermore, the previous studies in Sect. 13.2 have not taken the efficiency into
account (number of defects found per hour), but concentrates on detection rate as
the main dependent variable. From a software engineering perspective, where the
cost and efficiency of a method are of central interest, it is very interesting to study
not only the detection rate, but also if a method can perform well within limited
effort.

There are a number of threats to the validity of the results, including:

. The setting may not be realistic.

. The perspectives may not be optimal.

. The subjects may not be motivated or trained enough.
. The number of subjects may be too small.

O R

It can be argued that the threats to validity are under control, based on the follow-
ing considerations: (1) The inspection objects are similar to industrial requirements
documents; (2) The perspectives are motivated from a software engineering process
view; (3) The subjects were fourth year students with a special interest in software
engineering attending an optional course which they have chosen out of their own
interest, and further, many companies have a large fraction of employees with fresh
exams; (4) The presented simulation study shows that relatively small differences
among the perspectives can be detected with the chosen analysis for the given
number of data points.

A single study, like this, is no sufficient basis for changing the attitudes towards
PBR. Conducting the same analyses on data from existing experiments as well as
new replications with the purpose of evaluating differences among perspectives will
bring more clarity into the advantages and disadvantages of PBR techniques, and
also give a better control over the validity threats.
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13.9 Data on Individual Performance

Table 13.6 Data for each subject

Id Perspective Document Time Defects Efficiency Rate

1 U ATM 187 8 2.567 0.276
2 D PG 150 8 3.200 0.267
3 T ATM 165 9 3.273 0.310
4 U PG 185 11 3.568 0.367
5 D ATM 155 8 3.097 0.276
6 T PG 121 8 3.967 0.267
7 U ATM 190 7 2211 0.241
8 D PG 260 7 1.615 0.233
9 T ATM 123 6 2.927 0.207
10 U PG 155 6 2.323 0.200
11 D ATM 210 11 3.143 0.379
12 T PG 88 9 6.136 0.300
13 U ATM 280 11 2.357 0.379
14 D PG 145 11 4.552 0.367
15 T ATM 170 5 1.765 0.172
16 U PG 120 6 3.000 0.200
17 D ATM 190 9 2.842 0.310
18 T PG 97 5 3.093 0.167
19 U ATM 295 2 0.407 0.069
20 D PG 180 7 2.333 0.233
21 T ATM 306 7 1.373 0.241
22 U PG 223 4 1.076 0.133
23 D ATM 157 6 2.293 0.207
24 T PG 130 6 2.769 0.200
25 U ATM 195 13 4.000 0.448
26 D PG 200 7 2.100 0.233
27 T ATM 195 8 2.462 0.276
28 U PG 125 5 2.400 0.167
29 D ATM 200 8 2.400 0.276
30 T PG 150 5 2.000 0.167
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13.10 Data on Defects Found by Perspectives

13.10.1 PG document

Table 13.7 Defects id D# found (1) or not found (0) by individuals reading the PG document

Designer

Tester

Individuals

perspective

perspective

user perspective

18 24 30

12

16 22 28

10

20 26

14

10

11

12
13
14
15

16
17
18
19
20

21

22
23

24
25

26
27

28

29
30

33

11

40




199

13.10 Data on Defects Found by Perspectives

13.10.2 ATM document

Table 13.8 Defects if D# found (1) or not found (0) by individuals reading the ATM document

Designer

Tester

Individuals

perspective

perspective

user perspective

23 29

17

21 27

15

19 25

13

10

11

12
13
14
15

16
17
18
19
20

21

22
23

24
25

26
27

28

29

4
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Appendix A
Exercises

Explanations of the different types of exercises can be found in the Preface. In
summary, the objective is to provide four types of exercises:

Understanding These exercises aim at highlighting the most important issues
from each chapter. Exercises are available in Chaps. 1-11.

Training The objective of these exercises is to encourage practicing exper-
imentation. This includes setting up hypotheses and performing
the statistical analysis.

Reviewing Chapters 12 and 13 include examples of experiments. The in-
tention of this part is to provide help in reviewing and reading
published experiments.

Assignments These exercises are formulated to promote an understanding of
how experiments can be used in software engineering to evaluate
methods and techniques.

The understanding type questions can be found at the end of each chapter, while
the three other types of exercises can be found in this appendix.

A.1 Training

The exercises are preferably solved either using a statistical program package or
tables from books in statistics. The tables in Appendix B may be used, but the tables
provided are only for the 5% significance level, so if other significance levels are
used then other sources must be used. It should be remembered that Appendix B
has primarily been provided to explain the examples in Chap. 10.

ineering, 203
lag Berlin Heidelberg 2012
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A.1.1 Normally Distributed Data

The probably most complicated example of the statistical methods in Chap. 10 is
the goodness of fit test for the normal distribution, see Sect. 10.2.12. Thus, it is
appropriate to ensure a good understanding of that test.

1. Carry out the goodness of fit test, on the same data, see Table 10.20, using 12
segments instead.

A.1.2 Experience

In Chap. 12, the outcome of the Personal Software Process course is compared
with the background of the students taking the course. The analysis conducted in
Chap. 12 is only partial. The full data set is provided in Tables A.2 and A.3. In
Table A.1, the survey material handed out at the first lecture is presented. The
outcome of the survey is presented in Table A.2. The outcome of the PSP course
is presented in Table A.3, where the following seven measures have been used to
measure the outcome of the course:

Size The number of new and changed lines of code for the ten programs.

Time The total development time for the ten programs.

Prod. The productivity measured as number of lines of code per develop-
ment hour.

Faults The number of faults logged for the ten programs. This includes all

faults found, for example, including compilation faults.

Faults/KLOC  The number of faults for each 1,000 lines of code.

Pred. Size The absolute relative error in predicting program size. The figures
show the error in absolute percentages, for example, both over-
and underestimates with 20% are shown as 20% without any sign
indicating the direction of the estimation error.

Pred. Time The absolute relative error in predicting the development time.

Based on the presentation in Chap. 12 and the data in Tables A.2 and A.3 answer
the following questions.

1. How can the survey be improved? Think about what constitutes good measures
of background, experience and ability.

2. Define hypotheses, additional to those in Chap. 12, based on the available data.

Motivate why these hypotheses are interesting.

. What type of sampling has been used?

. Analyze the hypotheses you have stated. What are the results?

5. Discuss the external validity of your findings. Can the results be generalized
outside the PSP? Can the results be generalized to industrial software engineers?

NN
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Table A.1 Student characterization

Area Description Answer
Study program Answer: Computer Science and Engineering
(denoted Line) or Electrical Engineering
General knowledge 1. Little, but curious about the new course
in computer 2. Not my speciality (focus on other subjects)
science and 3. Rather good, but not my main focus
software (one of a couple of areas)
engineering 4. Main focus of my studies
(denoted SE)
General knowledge 1. Only 1-2 courses
in programming 2. 3 or more courses, no industrial experience
(denoted Prog.) 3. A few courses and some industrial experience
4. More than three courses and more than 1 year

industrial experience

Knowledge about 1. What s it?
the PSP (denoted 2. T have heard about it
PSP) 3. A general understanding of what it is
4. Thave read some material
Knowledge in C 1. No prior knowledge
(denoted C) 2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience
Knowledge in C++ 1. No prior knowledge
(denoted C++) 2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience
Number of courses A list of courses was provided and the students
(denoted Courses) were asked to put down a yes or no whether they

had taken the course or not. Moreover, they were
asked to complement the list of courses if they had
read something else they thought was a particularly
relevant course

A.1.3 Programming

In an experiment, 20 programmers have developed the same program, where 10 of
them have used programming language A and 10 have used language B. Language
A is newer and the company is planning to change to language A if it is better than
language B. During the development, the size of the program, the development time,
the total number of removed defects and the number of defects removed in test have
been measured.
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Table A.2 Information from background survey

Courses

C++

Line SE Prog. PSP

Subject

10
11

12
13

14
15
16
17
18
19
20
21

10

10

22
23

24
25

26
27

28

29
30

31

10

32
33

34
35
36
37
38
39
40

(continued)
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Table A.2 (continued)

Subject Line

PSP C++ Courses

wn
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43
44
45

46
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The programmers have been randomly assigned a programming language and

the objective of the experiment is to evaluate if the language has any effect on the
four measured variables. The collected data can be found in Table A.4. The data is
fictitious.

1.
2.
3.

Which design has been used in the experiment?

Define the hypotheses for the evaluation.

Use box plots to investigate the differences between the languages in terms of
central tendency and dispersion with respect to all four factors. Is there any
outlier and if so should it be removed?

. Assume that parametric tests can be used. Evaluate the effect of the programming

language on the four measured variables. Which conclusions can be drawn from
the results?

. Evaluate the effect of the programming language on the four measured variables

using a non-parametric test. Which conclusions can be drawn from the results?
Compare the results to those achieved when using parametric tests.

. Discuss the validity of the results and if it is appropriate to use a parametric test.
. Assume that the participating programmers have chosen the programming

language themselves. What consequences does this have on the validity of the
results? Do the conclusions still hold?
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Table A.3 Outcome from the PSP course

Subject Size Time Prod. Faults Faults/KLOC Pred. size Pred. time
1 839 3,657 13.8 53 63.2 39.7 20.2
2 1,249 3,799 19.7 56 44.8 44.1 21.2
3 968 1,680 34.6 71 73.3 29.1 25.1
4 996 4,357 13.7 35 35.1 24.3 18.0
5 794 2,011 23.7 32 40.3 26.0 13.2
6 849 2,505 20.3 26 30.6 61.1 48.2
7 1,455 4,017 21.7 118 81.1 36.5 34.7
8 1,177 2,673 26.4 61 51.8 34.6 32.5
9 747 1,552 28.9 41 54.9 51.0 18.2
10 1,107 2,479 26.8 59 53.3 22.6 14.0
11 729 3,449 12.7 27 37.0 26.9 52.0
12 999 3,105 19.3 63 63.1 26.0 19.8
13 881 2,224 23.8 44 49.9 47.9 39.9
14 730 2,395 18.3 94 128.8 63.0 20.3
15 1,145 3,632 18.9 70 61.1 333 34.8
16 1,803 3,193 33.9 98 54.4 52.9 21.8
17 800 2,702 17.8 60 75.0 34.3 26.7
18 1,042 2,089 29.9 64 61.4 49.3 41.5
19 918 3,648 15.1 43 46.8 49.7 71.5
20 1,115 6,807 9.8 26 23.3 34.1 22.4
21 890 4,096 13.0 108 121.3 19.3 34.8
22 1,038 3,609 17.3 98 94.4 21.4 52.0
23 1,251 6,925 10.8 498 398.1 21.8 34.1
24 623 4,216 8.9 53 85.1 40.5 36.3
25 1,319 1,864 42.5 92 69.7 43.7 45.0
26 800 4,088 11.7 74 92.5 42.6 36.2
27 1,267 2,553 29.8 88 69.5 53.0 30.1
28 945 1,648 34.4 42 44.4 333 17.9
29 724 4,144 10.5 49 67.7 32.8 17.8
30 1,131 2,869 23.7 102 90.2 29.2 15.5
31 1,021 2,235 27.4 49 48.0 18.0 25.0
32 840 3,215 15.7 69 82.1 85.6 54.0
33 985 5,643 105 133 135.0 27.3 31.0
34 590 2,678 13.2 33 55.9 83.0 20.0
35 727 4321 10.1 48 66.0 17.0 22.7
36 955 3,836 14.9 76 79.6 333 36.8
37 803 4,470 10.8 56 69.7 18.2 27.7
38 684 1,592 25.8 28 40.9 35.0 34.1
39 913 4,188 13.1 45 49.3 25.3 27.5
40 1,200 1,827 39.4 61 50.8 31.6 20.9
41 894 2,777 19.3 64 71.6 21.3 22.4
42 1,545 3,281 28.3 136 88.0 35.0 16.1

(continued)
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Table A.3 (continued)

Subject  Size Time Prod. Faults Faults/KLOC  Pred.size  Pred. time
43 995 2,806 21.3 71 71.4 15.6 38.3
44 807 2464 197 65 80.5 43.3 26.4
45 1,078 2,462 263 55 51.0 49.1 51.6
46 944 3,154  18.0 71 75.2 59.0 39.2
47 868 1,564 333 50 57.6 50.4 452
48 701 3,188 13.2 31 44.2 21.2 49.7
49 1,107 4,823 13.8 86 77.7 19.3 28.4
50 1,535 2,938 313 71 46.3 29.6 20.7
51 858 7,163 7.2 97 113.1 58.4 329
52 832 2,033 246 84 101.0 484 25.6
53 975 3,160 18.5 115 117.9 29.5 31.5
54 715 3,337 12.9 40 55.9 41.7 26.6
55 947 4,583 12.4 99 104.5 41.0 22.3
56 926 2,924 19.0 77 83.2 32.5 347
57 711 3,053 14.0 78 109.7 22.8 14.3
58 1,283 7,063 10.9 186 145.0 46.5 26.6
59 1,261 3,002 245 54 42.8 27.4 453

A.1.4 Design

This exercise is based on data obtained from an experiment carried out by Briand,
Bunse and Daly. The experiment is further described by Briand et al. [28].

An experiment is designed in order to evaluate the impact of quality object-
oriented design principles when intending to modify a given design. The quality
design principles evaluated are the principles provided by Coad and Yourdon [35].
In the experiment two systems are used with one design for each system. One of the
designs is a ‘good’ design made using the design principles and the other is a ‘bad’
design not using the principles. The two designs are documented in the same way
in terms of layout and content and are of the same size, i.e. they are developed to
be as similar as possible except for following or not following the design principles.
The objective of the experiment is to evaluate if the quality design principles ease
impact analysis when identifying changes in the design.

The task for each participant is to undertake two separate impact analyses, one
for each system design. Marking all places in the design that have to be changed
but not actually change them makes the impact analyses. The first impact analysis
is for a changed customer requirement and the second is for an enhancement in the
systems functionality. Four measures are collected during the task:

Mod_Time:  Time spent on identifying places for modification.
Mod_Comp: Represents the completeness of the impact analysis and is defined
as:
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Table A.4 Data for programming exercise

Programming Program size Development Total number of ~ Number of test
language (LOC) time (min) defects defects
A 1,408 3,949 89 23
A 1,529 2,061 69 16
A 946 3,869 170 41
A 1,141 5,562 271 55
A 696 5,028 103 39
A 775 2,296 75 29
A 1,205 2,980 79 11
A 1,159 2,991 194 28
A 862 2,701 67 27
A 1,206 2,592 77 15
B 1,316 3,986 68 20
B 1,787 4,477 54 10
B 1,105 3,789 130 23
B 1,583 4,371 48 13
B 1,381 3,325 133 29
B 944 5,234 80 25
B 1,492 4,901 64 21
B 1,217 3,897 89 29
B 936 3,825 57 20
B 1,441 4,015 79 18

Number of correct places found

Mod_Comp =
Total number of places to be found
Mod _Corr: Represents the correctness of the impact analysis and is defined as:
Mod.Corr — Number of correct places found

Total number of places indicated as found
Mod_Rate: The number of correct places found per time unit, that is:

Mod_Rate = Number of correct places found

Time for identification

The experiment is conducted at two occasions, in order to let each participant
work with both the good design and the bad design. The subjects were randomly
assigned to one of two groups, A or B. Group A worked with the good design at the
first occasion and the bad design in the second. Group B studied the bad design first
and then the good design. The collected data can be found in Table A.5.




A.l1 Training 211

Table A.5 Data for design exercise

Good object-oriented design Bad object-oriented design
- o o
5 E £ 5 2 E £ 5 2
5 & E 9 S & £ g S &
g S kS ks ks kS g kS g kS
& ) = = = = = = = =
PO1 B - 0.545 0.75 - - 0.238 0.714 -
P02 B - 0.818 1 - - 0.095 1 -
P03 A 20 0.409 1 0.45 25 0.19 1 0.16
P04 B 22 0.818 1 0.818 25 0.238 1 0.2
P05 B 30 0.909 1 0.667 35 0.476 0.909 0.286
P07 A - 0 - - 38 0.476 1 0.263
P09 A - 0.455 1 - - 0.476 1 -
P10 B - 0.409 0.9 - - 0.381 1 -
P11 A 45 0.545 0.923 0.267 50 0.714 1 0.3
P12 B - 0.773 1 - - 0.714 1 -
P13 A 40 0.773 1 0.425 40 0.762 1 0.4
P14 B 30 0.909 1 0.667 30 0.333 0.875 0.233
P15 B - 0.864 1 - 40 0.238 1 0.125
P16 B 30 0.773 1 0.567 - - - -
P17 B - 0.955 1 - - 0.286 0.75 -
P18 B - 0 - - - 0.19 1 -
P19 A 29 0.818 1 0.621 27 0.667 1 0.519
P20 A 9 0.591 1 1.444 15 0.19 0.8 0.267
P21 B 20 0.591 1 0.65 35 0.19 1 0.114
P22 B 30 0.682 1 0.5 20 0.714 1 0.75
P23 B - 0.818 1 - - 0.476 1 -
P24 A 30 0.773 1 0.567 40 0.762 1 0.4
P25 A - 0.955 1 - - 0.667 0.875 -
P26 B 25 0 0 0 25 0.095 0.5 0.08
P27 A 27 0.773 0.944 0.63 36 0.389 0.7 0.194
P28 A 25 0.773 1 0.68 30 0.667 1 0.467
P29 B 44 0.773 1 0.386 23 0.762 1 0.696
P31 A - 0.409 1 - - 0.286 0.75 -
P32 A 30 0.909 1 0.667 - 0.5 1 -
P33 A 65 0.818 1 0.277 - 0.619 1 -
P34 A 50 0.636 0.933 0.28 30 0.4 0.889 0.267
P35 A 10 0.591 1 1.3 10 0.667 1 1.4
P36 A 13 1 1 1.692 - 0.619 1 -
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. Which design has been used in the experiment?

. Define the hypotheses for the evaluation.

. How should the missing values in Table A.5 be treated?

. Assume that parametric tests can be used. Evaluate the effect of the quality design
principles on the four measured variables. Which conclusions can be drawn from
the results?

5. Evaluate the effect of the quality design principles on the four measured variables
using non-parametric tests. Which conclusions can be drawn from the results?
Compare the results to those achieved when using parametric tests.

6. Discuss the validity of the results and if it is appropriate to use parametric tests.

7. The participants in the experiment are students taking a software engineering

course that have volunteered to be subjects. From which population is the sample

taken from? Discuss how this type of sampling will affect the external validity of
the experiment? How can the sampling be made differently?

AW N =

A.1.5 Inspections

This exercise refers to the example experiment in Chap. 13.

1. Rewrite the abstract in Chap.13 to be a structured abstract, as defined in
Chap. 11.

2. Conduct the scoping and planning steps for an exact replication of the experi-
ment. Especially, define how many subjects should be enrolled to achieve a given
level of confidence in the analysis.

3. Conduct the scoping step for a differentiated replication of the experiment.
Define three different goal templates for three alternative replications. Discuss
pros and cons of each alternative with respect to costs, risks and gains (see also
Fig.2.1).

A.2 Reviewing

Below is a list of questions, which are important to consider when reading or
reviewing an article presenting an experiment. Use the list and review the examples
presented in Chaps. 12 and 13, and also some experiment presented in the literature.

The list below should be seen as a checklist in addition to normal questions when
reading an article. An example of a normal question may be; is the abstract a good
description of the content of the paper? Some specific aspects to consider when
reading an experiment article are:

* Is the experiment understandable and interesting in general?
* Does the experiment have any practical value?
s Are otherexperimentsraddressing the:problem summarized and referenced?
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e What is the population in the experiment?

 Is the sample used representative of the population?

* Are the dependent and independent variables clearly defined?

* Are the hypotheses clearly formulated?

e s the type of design clearly stated?

e Is the design correct?

¢ Is the instrumentation described properly?

s the validity of the experiment treated carefully and convincing?

e Are different types of validity threats addressed properly?

» Has the data been validated?

» Is the statistical power sufficient, are there enough subjects in the experiment?

* Are the appropriate statistical tests applied? Are Parametric or non-parametric
tests used and are they used correctly?

* Is the significance level used appropriate?

* Is the data interpreted correctly?

* Are the conclusions correct?

* Are the results not overstated?

e Is it possible to replicate the study?

e Is data provided?

» Is it possible to use the results for performing a meta-analysis?

* Is further work and experimentation in the area outlined?

A.3 Assignments

These assignments are based on the following general scenario. A company would
like to improve their way of working by changing the software process. You are
consulted as an expert in evaluating new techniques and methods in relation to the
existing process. The company would like to know whether or not to change their
software process.

You are expected to search for appropriate literature, review the existing literature
on the subject, apply the experiment process and write a report containing a
recommendation for the company. The recommendation should discuss both the
results of the experiment and other relevant issues for taking the decision whether
or not to change the process. Other relevant issues include costs and benefits for
making the change. If you are unable to find the correct costs, you are expected to
make estimates. The latter may be in terms of relative costs.

The assignments are intentionally fairly open-ended to allow for interpretation
and discussion. Each assignment is described in terms of prerequisites needed to
perform the assignment and then the actual task is briefly described. It should be
noted that the assignments below are examples of possible experiments that can be
conducted. The important issue to hold in mind is that the main objective is that the
assignments should provide practice in using experiments as part of an evaluation
procedure.
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Finally, it should be noted that some organizations provide what is called lab
packages that can be used to replicate experiments. Lab packages are important
as they allow us to build upon work by others and hence hopefully come to more
generally valid results by replication. Some lab packages can be found by a search
on the Internet. It may also be beneficial to contact the original experimenter to get
support and maybe also a non-published lab package.

A.3.1 Unit Test and Code Reviews

The company wants to evaluate if it is cost-effective to introduce code reviews. Unit
testing is done today, although on non-reviewed code. Is this the best way to do it?

Prerequisites

* Suitable programs with defects that can be found during either reviews or testing.

e A review method, which may be ad hoc, but preferable it should be something
more realistic, for example, a checklist-based approach. In this case, a checklist
is needed.

* A testing method, which also may be ad hoc, but preferably it is based on, for
example, usage or equivalence partitioning.

Task

¢ Evaluate if it is cost-effective to introduce code reviews.

A.3.2 Inspection Methods

Several different ways of conducting reviews are available. The company intends to
introduce the best inspection method out of two possible choices. Which of the two
methods is the best to introduce for the company?

Prerequisites

 Suitable software artifacts to review should be available.
* Two review methods with appropriate support in terms of, for example, checklists
or description of different reading perspectives, see also Appendix A.1.5.

Task

e Assume that the company intends to introduce reviews of the chosen software ar-
tifacts, which method should they introduce? Determine which of the inspection
methods that is best in finding defects. Is the best method also cost effective?
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A.3.3 Requirements Notation

It is important to write requirements specification so that all readers interpret them
easily and in the same way. The company has several different notations to choose
from. Which is the best way of representing requirements?

Prerequisites

* A requirements specification written in several different notations, for example,
natural language and different graphical representations.

Task

e Evaluate if it is beneficial to change the company’s notation for requirements
specifications. Assume that the company uses natural language today.




Appendix B
Statistical Tables

This appendix contains statistical tables for a significance level of 5%. More
elaborated tables can be found in most books on statistics, for example [119], and
tables are also available on the Internet. The main objective here is to provide some
information, so that the tests that are explained in Chap. 10 become understandable
and so that the examples provided can be followed. This is important even if
statistical packages are used for the calculations, since it is important to understand
the underlying calculations before just applying the different statistical tests. It is
also worth noting the tables are a shortcut, for example, the values for the t-test,
F-test and Chi-2 can be calculated from the respective distributions.
The following statistical tables are included:

e t-test (see Sects. 10.3.4, 10.3.7, and Table B.1)
e Chi-2 (see Sect. 10.3.12 and Table B.2)

e Mann-Whitney (see Sect. 10.3.5 and Table B.3)
¢ Wilcoxon (see Sect. 10.3.8 and Table B.4)

e F-test (see Sects. 10.3.6, 10.3.10, Table B.5)

ineering, 217
lag Berlin Heidelberg 2012



218

Table B.1 Critical values
two-tailed t-test (5%), see
Sects. 10.3.4 and 10.3.7

B Statistical Tables

Degrees of freedom t-value
1 12.706
2 4.303
3 3.182
4 2.776
5 2.571
6 2.447
7 2.365
8 2.306
9 2.262
10 2.228
11 2.201
12 2.179
13 2.160
14 2.145
15 2.131
16 2.120
17 2.110
18 2.101
19 2.093
20 2.086
21 2.080
22 2.074
23 2.069
24 2.064
25 2.060
26 2.056
27 2.052
28 2.048
29 2.045
30 2.042
40 2.021
60 2.000
120 1.980

00 1.960
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Table B.2 Critical values
one-tailed Chi2-test (5%), see
Sect. 10.3.12

219

Degrees of freedom 1

1 3.84
2 5.99
3 7.81
4 9.49
5 11.07
6 12.59
7 14.07
8 15.51
9 16.92
10 18.31
11 19.68
12 21.03
13 22.36
14 23.68
15 25.00
16 26.30
17 27.59
18 28.87
19 30.14
20 31.41
21 32.67
22 33.92
23 35.17
24 36.42
25 37.65
26 38.88
27 40.11
28 41.34
29 42.56
30 43.77
40 55.76
60 79.08
80 101.88

100 124.34
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Table B.3 Critical values two-tailed Mann-Whitney (5%), see Sect. 10.3.5

Np 5 6 7 8 9 10 11 12
Ny
3 0 1 1 2 2 3 3 4
4 1 2 3 4 4 5 6 7
5 2 3 5 6 7 8 9 11
6 5 6 8 10 11 13 14
7 8 10 12 14 16 18
8 13 15 17 19 22
9 17 20 23 26
10 23 26 29
11 30 33
12 37

Table B.4 Critical values

two-tailed matched-pair n T

Wilcoxon test (5%), see 6 0

Sect. 10.3.8 7 2
8 3
9 5
10 8
11 10
12 13
13 17
14 21
15 25
16 29
17 34
18 40
19 46
20 52
22 66
25 89

Please note that in Table B.3, N is for the smaller sample and Ny for the larger
sample.

Please note that Table B.5 provides the upper 0.025% point of the F distribution
with fi and f, being the degrees of freedom. This is equivalent to Fo 0025, /;, 5 -
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